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(1/21) We aim to. . .

1 Answer a question of Gitik (2017) regarding the
addition of highly generic subsets of ω2 while
preserving cardinals and the GCH

2 Introduce a generalization of Abraham’s forcing (1983)
for adding a club (1976–2014) and provide a new
proof for a theorem of Shelah

Using Forcing by Side Conditions
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(2/21) Elementary Substructures

⟨V,∈,⊴, . . . ⟩ |= ZFC

Definition
M ≺ V if and only if

1 M ⊆ V
2 ∀φ(v1, . . . , vn)∀a1, . . . , an ∈ M

M |= φ(a1, . . . , an) ⇐⇒ V |= φ(a1, . . . , an)

Lemma
Let V |= ZFC and κ ≤ |V| infinite cardinal
∀X ⊆ V with |X| ≤ κ ∃M ≺ V s.t.

1 |M| = κ

2 X ⊆ M
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(3/21) Some Notations

I
trcl(x) is the least transitive y ⊇ x

II
Hθ = {x : |trcl(x)| < θ}

III
[x]κ = {y ⊆ x : |y| = κ}

IV
Eℵ0,θ = {M ∈ [Hθ]

ℵ0 : M ≺ Hθ}
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(4/21) Large Subsets

club
C ⊆ [A]κ is closed unbounded iff

1 ∀x ∈ [A]κ ∃y ∈ C(y ⊇ x)
2

⋃
α<κ

xα ∈ C, for every ⊆-increasing ⟨xα ∈ C : α < κ⟩

C = {α ∈ ω2 : α is a limit ordinal} ⊆ ω2

Eℵ0,θ ⊆ [Hθ]
ℵ0

Definition
S ⊆ [A]κ is Stationary, if S meets every club C ⊆ [A]κ

S = {α ∈ ω2 : cof(α) = ω1}
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(5/21) Forcing
P = ⟨P,≤P, 1P⟩ ∈ V is a Forcing notion

Definition
F ⊆ P is filter if

1 ∀p, q ∈ F ∃r ∈ F(r ≤ p, q)
2 (q ≤ p ∧ q ∈ F) =⇒ p ∈ F

Definition
D ⊆ P

is dense iff ∀p ∈ P∃q ∈ D(q ≤ p)
predense iff ∀p ∈ P∃q ∈ D(q ∥ p)

Definition
G ⊆ P is Generic over V, if

1 G is a filter
2 G ∩ D ̸= ∅ ∀ Dense/Predense D ∈ V
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(6/21) Generic Extension

P-name
x˜= {⟨y˜, p⟩ : p ∈ P and y˜ is a P-name}

Definition
x˜[G] = {y˜[G] : ⟨y˜, p⟩ ∈ x˜ and p ∈ G}

Definition
V[G] = {x˜[G] : x˜ ∈ V is a P-name}

Lemma
Let

1 x̌ = {⟨y̌, 1⟩ : y ∈ x} for every x ∈ V
2 Ġ = {⟨p̌, p⟩ : p ∈ P}

Then for every H ⊆ P Generic, x̌[H] = x and Ġ[H] = H
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2 Ġ = {⟨p̌, p⟩ : p ∈ P}

Then for every H ⊆ P Generic, x̌[H] = x and Ġ[H] = H
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Rouholah Hoseini Naveh Forcing With Elementary Substructures



(7/21) The magics
Corollary

V ⊆ V[G]

G ∈ V[G]

Theorem
V[G] |= ZFC and V[G] ∩ ON = V ∩ ON

Cohen Forcing
Add(ℵ0,ℵ2) = {p : ω × ω2 → 2 : |p| < ℵ0}

1 ∪G : ω × ω2 −→ 2 NEW!
2 V[G] |= ¬CH

A ⊆ P is antichain, if p ∦ q for all p, q ∈ A
P preserves θ ≥ κ if its maximal antichains have size < κ
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(8/21) Proper Forcing
Definition
P is Proper if for every θ > ω
Every Stationary S ⊆ [θ]ℵ0 remains stationary in V[G]

If P is proper, then ℵV
1 = ℵV[G]

1

Master Condition
q ∈ P ∈ M ∈ Eℵ0,θ is called (M,P)-Generic condition, if
for every D ∈ M, dense in P, D ∩ M is predense below q

Theorem
P is proper if and only if
For every large enough cardinal θ and club many M ∈ Eℵ0,θ

Every p ∈ P ∩ M has an (M,P)-generic extension
strong properness
Using strongly (M,P)-generic conditions, D ⊆ P ∩ M must be
predense below q.
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(9/21) The Gitik’s question
Is there a cardinal and GCH preserving extension of the
universe in which there is A ⊆ κ of size κ such that for every
countable infinite x ∈ PV(κ)

x ∩ A ̸= ∅
x ∩ (κ \ A) ≠ ∅

Let Pκ = {p : κ −→ 2 : |p| < ℵ0}

A = {α : ∃p ∈ G(p(α) = 1)}

For every x ∈ P(κ) ∩ V, let

Dx = {q ∈ P : ∃γ, γ′ ∈ x(q(γ) = 1 and q(γ′) = 0)}

The problem
Pκ

∼= Add(ℵ0, κ) So for κ ≥ ℵ2, the GCH FAILS!
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(10/21) The answer for ℵ2

Let x ⊆ Eℵ0,θ

δM = M ∩ ω1 for each M ∈ x
x(α) = {M ∈ x : δM = α}
supp(x) = {δM : M ∈ x}

p = ⟨Mp, fp⟩ ∈ P where:
1 fp ∈ Pℵ2
2 Mp ⊆ Eℵ0,ℵ2 finite
3 M,M′ ∈ Mp and δM = δM′ =⇒ M ∼= M′

4 M,M′ ∈ Mp and δM < δM′ =⇒ ∃M′′ ∼= M′(M ∈ M′′)
5 If M ∈ Mp, then for all M′ ∈ Mp with M ∼= M′,

α ∈ dom(fp) ∩ M =⇒
®
φM,M′(α) ∈ dom(fp)
fp(φM,M′(α)) = fp(α)

A = {α : ∃p ∈ G(fp(α) = 1)}
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(11/21) Strongly Master Condition
Lemma (Strongly (N,P)-Generic Extension)
Let θ > ω2 large enough and N ∈ Eℵ0,θ

Let p ∈ P ∩ N and assume M = N ∩ Hω2

1 M ∈ Eℵ0,ω2

2 p′ = ⟨Mp ∪ {M}, fp⟩ is the master condition

Let D ⊆ P ∩ N dense, and q ≤ p′ (Note that M ∈ Mq)

Lemma
By Elementarity, there exists q̂ = ⟨M̂q, f̂q⟩ ∈ P ∩ N

1 q̂ ∥ q
2 supp(M̂q) = supp(Mq) ∩ N
3 Mq ∩ N ⊆ M̂q
4 M1 ∈ Mq and M2 ∈ M̂q(δM1) =⇒ M1 ∼= M2

5 f̂q ⊇ fq↾N
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(12/21) The restriction of q to N
Let W be the set of all ∈-chains w = ⟨Nw

1 , . . . ,Nw
l ⟩ in M̂q ∪Mq

such that Nw
l ∈ Mq(δM)

q↾N = ⟨Mq↾M, fq↾M⟩ where

Mq↾N = {φNw
l ,M(Nw

i ) : w ∈ W and 1 ≤ i < l}

Lemma
q↾N ∈ P ∩ N

Let r ∈ D, extends q↾N

s = ⟨Ms, fs⟩ where
Ms = Mr ∪Mq ∪ {φM,N(K) : N ∈ Mq(δM) and K ∈ Mr}
fs = fr ∪ fq ∪ {⟨φN′,N′′(α), fr(α)⟩ :
α ∈ dom(fr),N′,N′′ ∈ Ms and δN′ = δN′′}

(GCH) P is ℵ2−c.c so preserves all cardinals
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(13/21) Preserving the CH

Lemma
Let p ∈ M ∼= M′ ∈ Eℵ0,ℵ2,

1 pM,M′ = ⟨Mp ∪ {M,M′}, fp ∪ {⟨φM,M′(α), fp(α)⟩ :
α ∈ dom(fp)}⟩

2 pM,M′ ⊩ φ̌M,M′ [Ġ ∩ M̌] = Ġ ∩ M̌′

Lemma
P preserves the CH

By contradiction assume p ⊩ ⟨r˜α : α < ω2⟩ is a set of reals
Let pα ≤ p and pα ⊩ r˜α ⊆ ω̌
Let pα, p,P, r˜α ∈ Mα ∈ Eℵ0,θ

There is α < β < ω2 s.t. ⟨Mα,∈,P, pα, r˜α⟩ ∼= ⟨Mβ ,∈,P, pβ , r˜β⟩pMα,Mβ
≤ pα, pβ and pMα,Mβ

⊩ r˜α = r˜β
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(14/21) Adding a club

Theorem
Let T ⊆ κ stationary. There are stationary sets S1,S2 ⊆ T
such that S1 ∩ S2 = ∅

Baumgartner, Harrington and Kleinberg (1976)
Let T ⊆ ω1 stationary. There is a forcing notion which adds a
club C ⊆ T

(1983)Abraham-Shelah
Let S ⊆ κ fat stationary. There is a forcing notion which adds
a club C ⊆ S and adds no new sets of size < κ
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(15/21) Still adding club

2004 Mitchell, 2005 Friedman
A club in ω2 with finite conditions
The first use of side conditions to add an object to a cardinal
> ℵ1

2014 Neeman
A club in ω2 with finite condition contains ∈-chains of
elementary substructures of two types

We (2024)?
A Generalization of Abraham’s Forcing from another aspect
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(16/21) Preliminaries

N = ⟨Nξ : ξ ≤ α⟩ is an α-tower where
1 Nξ ∈ Eℵ0,λ

2 Nζ ∈ Nζ+1

3 Nδ =
⋃
ξ<δ

Nξ for limit δ

q is (N ,P)-generic, if it is (Nξ,P)-generic for every ξ ≤ α

P is α-proper, if for every α-tower N , every p ∈ N0 has an
(N ,P)-generic extension
P is < α-proper, if is β-proper for every β < α

α is indecomposable, if β + γ < α, for every β ≤ γ < α
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(17/21) The Forcing Notion

Definition
p = ⟨Mp, fp⟩ where

1 Mp = ⟨Mp
i ∈ Eℵ0,ℵ1 : i < np⟩ finite ∈-chain

2 fp : Mp −→ Hω1 such that

fp(Mp
i ) ⊂ Mp

i+1 finite
fp(Mp

np−1) ⊂ Hω1 finite

q ≤ p if and only if
1 Mp ⊆ Mq
2 fp(M) ⊆ fq(M), for all M ∈ Mp
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(18/21) P Adds a club
Theorem
C = {δM : ∃p ∈ G(M ∈ Mp)} is a club in ω1

Lemma
Dγ = {q ∈ P : ∃M ∈ Mq(γ < δM)} is Dense

(∀p ∈ P)(∀γ ∈ ω1)(∃p′ ≤ p)(∃N ∈ Mp′)(γ < δN)

Lemma
If p ⊩ γ̌ /∈ Ċ, then p ⊩ γ̌ /∈ lim Ċ

δMp′
i
< γ < δMp′

i+1
=⇒ γ < ξ ∈ δMp′

i+1

fq(Mp′

i ) = fp′(Mp′

i ) ∪ {ξ}
r ≤ q =⇒ r ⊩ Ċ ∩ (δMp′

i
, ξ] = ∅

Rouholah Hoseini Naveh Forcing With Elementary Substructures



(18/21) P Adds a club
Theorem
C = {δM : ∃p ∈ G(M ∈ Mp)} is a club in ω1

Lemma
Dγ = {q ∈ P : ∃M ∈ Mq(γ < δM)} is Dense

(∀p ∈ P)(∀γ ∈ ω1)(∃p′ ≤ p)(∃N ∈ Mp′)(γ < δN)

Lemma
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(19/21) Properness

Theorem
P is proper

Let p ∈ M′ ∈ Eℵ0,θ and M = M′ ∩ Hω1

p′ = ⟨Mp ∪ {M}, fp ∪ ⟨M, ∅⟩⟩
Let D ⊆ P ∩ M′ and q ≤ p′
q↾M′ = ⟨Mq ∩ M, fq↾M⟩
Let r ≤ q↾M′

s = ⟨Mr ∪Mq, fr ∪ fq⟩

Theorem
P is not ω-proper

Let N = ⟨Ni : i ≤ ω⟩ be an ω-tower and p ∈ N0
If q ≤ p is (N ,P)-generic, then q ⊩ Ċ is not a club
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(20/21) Generalized case
Definition
Let α < ω1 indecomposable
P[α] = {p = ⟨Mp, fp,Wp⟩} where

Mp = ⟨Mp
ξ ∈ Eℵ0,ℵ1 : ξ ≤ γp < α⟩ a continuous ∈-chain

fp : Mp −→ Hω1 s.t.
fp(Mp

ξ) ⊂ Mp
ξ+1 finite

fp(Mp
γ) ⊂ Hω1 finite

Wp ⊂ Mp s.t. ∀N ∈ Wp, p↾N = ⟨Mp ∩N, fp↾N,Wp ∩N⟩ ∈ N

q ≤ p if and only if
1 Mp ⊆ Mq
2 fp(M) ⊆ fq(M) for all M ∈ Mp
3 Wp ⊆ Wq

C = {δM : ∃p ∈ G(M ∈ Mp)} is a club in ω1
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(21/21) Properness

Theorem
P[α] is < α-proper but not α-proper

N = ⟨Nζ : ζ ≤ β < α⟩ and p ∈ P[α] ∩ N0 fix
p′ = ⟨Mp′ , fp′ ,Wp′⟩ such that

1 Mp′ = Mp ∪N
2 fp′(Mp′

ξ ) = fp(Mp
ξ) for ξ ≤ γp

3 fp′(Nζ) = δNζ
+ 1 for ζ ≤ β

4 Wp′ = Wp ∪ {Nζ ∈ N : ζ is not a limit}

p′ is strongly (Nζ ,P[α])-generic if ζ is non-limit
p′ is (Nδ,P[α])-generic if δ is limit

Let N = ⟨Nξ : ξ ≤ α⟩ is an α-tower and p ∈ N0
If q ≤ p is (N ,P[α])-generic, then q ⊩ Ċ is not a club
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