Forcing With Elementary Substructures

(Side Condition Forcing)

Rouholah Hoseini Naveh

July 2024

Supervisors:

Dr. Esfandiar Eslami Dr. Mohammad Golshani

Issac Newton: "If I have seen further, it is by standing on the shoulders of giants"

• Answer a question of Gitik (2017) regarding the addition of highly generic subsets of ω_2 while preserving cardinals and the GCH

• Answer a question of Gitik (2017) regarding the addition of highly generic subsets of ω_2 while preserving cardinals and the GCH

2 Introduce a generalization of Abraham's forcing (1983) for adding a club (1976–2014) and provide a new proof for a theorem of Shelah

• Answer a question of Gitik (2017) regarding the addition of highly generic subsets of ω_2 while preserving cardinals and the GCH

2 Introduce a generalization of Abraham's forcing (1983) for adding a club (1976–2014) and provide a new proof for a theorem of Shelah

Using Forcing by Side Conditions

$$\langle V, \in, \leq, \dots \rangle \models ZFC$$

(2/21)

$$\langle V, \in, \leq, \dots \rangle \models ZFC$$

 $M \prec V$ if and only if

- $\mathbf{0} \ M \subseteq V$

$$M \models \varphi(a_1, \ldots, a_n) \iff V \models \varphi(a_1, \ldots, a_n)$$

$$\langle V, \in, \leq, \dots \rangle \models ZFC$$

 $M \prec V$ if and only if

- $\mathbf{0} \ M \subseteq V$
- $\forall \varphi(v_1,\ldots,v_n) \forall a_1,\ldots,a_n \in M$

$$M \models \varphi(a_1, \ldots, a_n) \iff V \models \varphi(a_1, \ldots, a_n)$$

Lemma

Let $V \models \mathrm{ZFC}$ and $\kappa \leq |V|$ infinite cardinal $\forall X \subseteq V$ with $|X| \leq \kappa \ \exists M \prec V \ s.t.$

- $\mathbf{Q} \quad X \subseteq M$

 $\operatorname{trcl}(x)$ is the least transitive $y \supseteq x$

 $\operatorname{trcl}(x)$ is the least transitive $y \supseteq x$

II

$$H_{\theta} = \{x: |\operatorname{trcl}(x)| < \theta\}$$

 $\operatorname{trcl}(x)$ is the least transitive $y \supseteq x$

II

$$H_{\theta} = \{x: |\operatorname{trcl}(x)| < \theta\}$$

III

$$[x]^{\kappa} = \{ y \subseteq x \colon |y| = \kappa \}$$

 $\operatorname{trcl}(x)$ is the least transitive $y \supseteq x$

Π

$$H_{\theta} = \{x: |\operatorname{trcl}(x)| < \theta\}$$

Ш

$$[x]^{\kappa} = \{ y \subseteq x \colon |y| = \kappa \}$$

IV

$$\mathcal{E}_{\aleph_0,\theta} = \{ M \in [H_\theta]^{\aleph_0} \colon M \prec H_\theta \}$$

club

 $C \subseteq [A]^{\kappa}$ is **closed unbounded** iff

- ② $\bigcup_{\alpha < \kappa} x_{\alpha} \in C$, for every \subseteq -increasing $\langle x_{\alpha} \in C : \alpha < \kappa \rangle$

club

 $C \subseteq [A]^{\kappa}$ is **closed unbounded** iff

- ② $\bigcup_{\alpha < \kappa} x_{\alpha} \in C$, for every \subseteq -increasing $\langle x_{\alpha} \in C : \alpha < \kappa \rangle$

 $C = \{ \alpha \in \omega_2 : \alpha \text{ is a } \mathbf{limit} \text{ ordinal} \} \subseteq \omega_2$

$$\mathcal{E}_{\aleph_0,\theta} \subseteq [H_\theta]^{\aleph_0}$$

club

 $C \subseteq [A]^{\kappa}$ is **closed unbounded** iff

- ② $\bigcup_{\alpha < \kappa} x_{\alpha} \in C$, for every \subseteq -increasing $\langle x_{\alpha} \in C : \alpha < \kappa \rangle$

 $C = \{ \alpha \in \omega_2 : \alpha \text{ is a } \mathbf{limit} \text{ ordinal} \} \subseteq \omega_2$

$$\mathcal{E}_{\aleph_0,\theta} \subseteq [H_\theta]^{\aleph_0}$$

Definition

 $S \subseteq [A]^{\kappa}$ is **Stationary**, if S meets every club $C \subseteq [A]^{\kappa}$

$$S = \{ \alpha \in \omega_2 \colon \operatorname{cof}(\alpha) = \omega_1 \}$$

 $\mathbb{P} = \langle \mathbb{P}, \leq_{\mathbb{P}}, 1_{\mathbb{P}} \rangle \in V \text{ is a Forcing notion}$

$$\mathbb{P} = \langle \mathbb{P}, \leq_{\mathbb{P}}, 1_{\mathbb{P}} \rangle \in V \text{ is a Forcing notion}$$

 $F \subseteq \mathbb{P}$ is filter if

 $F \subseteq \mathbb{P}$ is **filter** if

Definition

 $D \subseteq \mathbb{P}$

- is **dense** iff $\forall p \in \mathbb{P} \exists q \in D (q \leq p)$
- **predense** iff $\forall p \in \mathbb{P} \exists q \in D(q \parallel p)$

$$\mathbb{P} = \langle \mathbb{P}, \leq_{\mathbb{P}}, 1_{\mathbb{P}} \rangle \in V \text{ is a Forcing notion}$$

 $F \subseteq \mathbb{P}$ is filter if

Definition

 $D \subseteq \mathbb{P}$

- is **dense** iff $\forall p \in \mathbb{P} \exists q \in D (q \leq p)$
- **predense** iff $\forall p \in \mathbb{P} \exists q \in D(q \parallel p)$

Definition

 $G \subseteq \mathbb{P}$ is **Generic** over V, if

- lacktriangledown G is a filter
- $G \cap D \neq \emptyset \ \forall \ Dense/Predense \ D \in V$

$$\underline{x} = \{\langle \underline{y}, p \rangle \colon p \in \mathbb{P} \text{ and } \underline{y} \text{ is a \mathbb{P}-name} \}$$

$$\underline{x} = \{\langle \underline{y}, p \rangle \colon p \in \mathbb{P} \text{ and } \underline{y} \text{ is a } \mathbb{P}\text{-name}\}$$

Definition

$$\underline{x}[G] = \{\underline{y}[G] \colon \langle \underline{y}, p \rangle \in \underline{x} \text{ and } p \in G\}$$

 $\underline{x} = \{\langle \underline{y}, p \rangle \colon p \in \mathbb{P} \text{ and } \underline{y} \text{ is a } \mathbb{P}\text{-name}\}$

Definition

$$\underline{x}[G] = \{\underline{y}[G] : \langle \underline{y}, p \rangle \in \underline{x} \text{ and } p \in G\}$$

Definition

$$V[G] = \{ \underline{x}[G] : \underline{x} \in V \text{ is a } \mathbb{P}\text{-name} \}$$

 $\underline{x} = \{\langle \underline{y}, p \rangle \colon p \in \mathbb{P} \text{ and } \underline{y} \text{ is a } \mathbb{P}\text{-name}\}$

Definition

$$\underline{x}[G] = \{y[G] : \langle y, p \rangle \in \underline{x} \text{ and } p \in G\}$$

Definition

$$V[G] = \{\underline{x}[G] : \underline{x} \in V \text{ is a } \mathbb{P}\text{-name}\}$$

Lemma

Let

$$\bullet \quad \check{x} = \{\langle \check{y}, 1 \rangle \colon y \in x\} \text{ for every } x \in V$$

$$\dot{G} = \{ \langle \check{p}, p \rangle \colon p \in \mathbb{P} \}$$

Then for every $H \subseteq \mathbb{P}$ Generic, $\check{x}[H] = x$ and G[H] = H

- $\bullet \ V \subseteq \mathit{V}[\mathit{G}]$
- $\bullet \ \ G \in \ V[G]$

- $V \subseteq V[G]$
- $\bullet \ \ G \in \ V[G]$

Theorem

 $V[G] \models \mathsf{ZFC} \ and \ V[G] \cap \mathsf{ON} = \mathit{V} \cap \mathsf{ON}$

- $V \subseteq V[G]$
- $G \in V[G]$

Theorem

 $V[G] \models \text{ZFC} \ and \ V[G] \cap \text{ON} = V \cap \text{ON}$

Cohen Forcing

 $Add(\aleph_0, \aleph_2) = \{ p \colon \omega \times \omega_2 \to 2 \colon |p| < \aleph_0 \}$

- \circ $V[G] \models \neg CH$

- $V \subseteq V[G]$
- $G \in V[G]$

Theorem

 $V[G] \models ZFC \ and \ V[G] \cap ON = V \cap ON$

Cohen Forcing

 $Add(\aleph_0, \aleph_2) = \{ p \colon \omega \times \omega_2 \to 2 \colon |p| < \aleph_0 \}$

- \bullet $\cup G: \omega \times \omega_2 \longrightarrow 2$ **NEW!**
- $V[G] \models \neg CH$

 $A \subseteq \mathbb{P}$ is **antichain**, if $p \not \mid q$ for all $p, q \in A$

 \mathbb{P} preserves $\theta \geq \kappa$ if its maximal antichains have size $< \kappa$

Proper Forcing

Definition

 \mathbb{P} is **Proper** if for every $\theta > \omega$

Every **Stationary** $S \subseteq [\theta]^{\aleph_0}$ **remains** stationary in V[G]

 \mathbb{P} is **Proper** if for every $\theta > \omega$

Every **Stationary** $S \subseteq [\theta]^{\aleph_0}$ **remains** stationary in V[G]

If \mathbb{P} is proper, then $\aleph_1^V = \aleph_1^{V[G]}$

 \mathbb{P} is **Proper** if for every $\theta > \omega$

Every **Stationary** $S \subseteq [\theta]^{\aleph_0}$ **remains** stationary in V[G]

If \mathbb{P} is proper, then $\aleph_1^V = \aleph_1^{V[G]}$

Master Condition

 $q \in \mathbb{P} \in M \in \mathcal{E}_{\aleph_0,\theta}$ is called (M,\mathbb{P}) -Generic condition, if for every $D \in M$, dense in \mathbb{P} , $D \cap M$ is predense below q

8/21) Proper Forcing

Definition

 \mathbb{P} is **Proper** if for every $\theta > \omega$

Every **Stationary** $S \subseteq [\theta]^{\aleph_0}$ **remains** stationary in V[G]

If \mathbb{P} is proper, then $\aleph_1^V = \aleph_1^{V[G]}$

Master Condition

 $q \in \mathbb{P} \in M \in \mathcal{E}_{\aleph_0,\theta}$ is called (M,\mathbb{P}) -Generic condition, if for every $D \in M$, dense in \mathbb{P} , $D \cap M$ is predense below q

Theorem

 \mathbb{P} is proper if and only if

For every large enough cardinal θ and club many $M \in \mathcal{E}_{\aleph_0,\theta}$ Every $p \in \mathbb{P} \cap M$ has an (M,\mathbb{P}) -generic extension

Proper Forcing

Definition

 \mathbb{P} is **Proper** if for every $\theta > \omega$

Every **Stationary** $S \subseteq [\theta]^{\aleph_0}$ **remains** stationary in V[G]

If \mathbb{P} is proper, then $\aleph_1^V = \aleph_1^{V[G]}$

Master Condition

 $q \in \mathbb{P} \in M \in \mathcal{E}_{\aleph_0,\theta}$ is called (M,\mathbb{P}) -Generic condition, if for every $D \in M$, dense in \mathbb{P} , $D \cap M$ is predense below q

Theorem

 \mathbb{P} is proper if and only if

For every large enough cardinal θ and club many $M \in \mathcal{E}_{\aleph_0,\theta}$ Every $p \in \mathbb{P} \cap M$ has an (M,\mathbb{P}) -generic extension

strong properness

Using **strongly** (M, \mathbb{P}) -generic conditions, $D \subseteq \mathbb{P} \cap M$ must be predense below q.

Is there a **cardinal** and GCH **preserving** extension of the universe in which there is $A \subseteq \kappa$ of **size** κ such that for every **countable infinite** $x \in \mathcal{P}^V(\kappa)$

- $x \cap A \neq \emptyset$
- $x \cap (\kappa \setminus A) \neq \emptyset$

Is there a **cardinal** and GCH **preserving** extension of the universe in which there is $A \subseteq \kappa$ of **size** κ such that for every **countable infinite** $x \in \mathcal{P}^V(\kappa)$

- $x \cap A \neq \emptyset$
- $x \cap (\kappa \setminus A) \neq \emptyset$

Let
$$\mathbb{P}_{\kappa} = \{ p \colon \kappa \longrightarrow 2 \colon |p| < \aleph_0 \}$$

$$A = \{\alpha \colon \exists p \in G(p(\alpha) = 1)\}\$$

For every $x \in \mathcal{P}(\kappa) \cap V$, let

$$D_x = \{ q \in \mathbb{P} : \exists \gamma, \gamma' \in x(q(\gamma) = 1 \text{ and } q(\gamma') = 0) \}$$

Is there a **cardinal** and GCH **preserving** extension of the universe in which there is $A \subseteq \kappa$ of **size** κ such that for every **countable infinite** $x \in \mathcal{P}^V(\kappa)$

- $x \cap A \neq \emptyset$
- $x \cap (\kappa \setminus A) \neq \emptyset$

Let
$$\mathbb{P}_{\kappa} = \{p \colon \kappa \longrightarrow 2 \colon |p| < \aleph_0\}$$

$$A = \{\alpha \colon \exists p \in G(p(\alpha) = 1)\}\$$

For every $x \in \mathcal{P}(\kappa) \cap V$, let

$$D_x = \{ q \in \mathbb{P} : \exists \gamma, \gamma' \in x (q(\gamma) = 1 \text{ and } q(\gamma') = 0) \}$$

The problem

 $\mathbb{P}_{\kappa} \cong \operatorname{Add}(\aleph_0, \kappa)$ So for $\kappa \geq \aleph_2$, the GCH **FAILS!**

The answer for \aleph_2

Let $x \subseteq \mathcal{E}_{\aleph_0,\theta}$

- $\delta_M = M \cap \omega_1$ for each $M \in x$
- $x(\alpha) = \{M \in x : \delta_M = \alpha\}$
- $supp(x) = \{\delta_M : M \in x\}$

Let
$$x \subseteq \mathcal{E}_{\aleph_0,\theta}$$

- $\delta_M = M \cap \omega_1$ for each $M \in x$
- $x(\alpha) = \{M \in x : \delta_M = \alpha\}$

$p = \langle \mathcal{M}_p, f_p \rangle \in \mathbb{P}$ where:

- $M, M' \in \mathcal{M}_p \text{ and } \delta_M = \delta_{M'} \implies M \cong M'$
- **6** If $M \in \mathcal{M}_p$, then for all $M' \in \mathcal{M}_p$ with $M \cong M'$,

$$\alpha \in \operatorname{dom}(f_p) \cap M \implies \begin{cases} \varphi_{M,M'}(\alpha) \in \operatorname{dom}(f_p) \\ f_p(\varphi_{M,M'}(\alpha)) = f_p(\alpha) \end{cases}$$

Let
$$x \subseteq \mathcal{E}_{\aleph_0,\theta}$$

- $\delta_M = M \cap \omega_1$ for each $M \in x$
- $x(\alpha) = \{M \in x : \delta_M = \alpha\}$

$p = \langle \mathcal{M}_p, f_p \rangle \in \mathbb{P}$ where:

- $\mathfrak{D}_p \subseteq \mathcal{E}_{\aleph_0,\aleph_2}$ finite
- $M, M' \in \mathcal{M}_p \text{ and } \delta_M = \delta_{M'} \implies M \cong M'$
- $M, M' \in \mathcal{M}_p \text{ and } \delta_M < \delta_{M'} \implies \exists M'' \cong M'(M \in M'')$
- **5** If $M \in \mathcal{M}_p$, then for all $M' \in \mathcal{M}_p$ with $M \cong M'$,

$$\alpha \in \operatorname{dom}(f_p) \cap M \implies \begin{cases} \varphi_{M,M'}(\alpha) \in \operatorname{dom}(f_p) \\ f_p(\varphi_{M,M'}(\alpha)) = f_p(\alpha) \end{cases}$$

$$A = \{\alpha \colon \exists p \in G(f_p(\alpha) = 1)\}\$$

(11/21) Strongly Master Condition

Lemma (Strongly (N, \mathbb{P}) -Generic Extension)

Let $\theta > \omega_2$ large enough and $N \in \mathcal{E}_{\aleph_0,\theta}$ Let $p \in \mathbb{P} \cap N$ and assume $M = N \cap H_{\omega_2}$

- $\bullet M \in \mathcal{E}_{\aleph_0,\omega_2}$
- $p' = \langle \mathcal{M}_p \cup \{M\}, f_p \rangle$ is the master condition

(11/21) Strongly Master Condition

Lemma (Strongly (N, \mathbb{P}) -Generic Extension)

Let $\theta > \omega_2$ large enough and $N \in \mathcal{E}_{\aleph_0,\theta}$ Let $p \in \mathbb{P} \cap N$ and assume $M = N \cap H_{\omega_2}$

- $\bullet M \in \mathcal{E}_{\aleph_0,\omega_2}$

Let $D \subseteq \mathbb{P} \cap N$ dense, and $q \leq p'$ (Note that $M \in \mathcal{M}_q$)

(11/21) Strongly Master Condition

Lemma (Strongly (N, \mathbb{P}) -Generic Extension)

Let $\theta > \omega_2$ large enough and $N \in \mathcal{E}_{\aleph_0,\theta}$ Let $p \in \mathbb{P} \cap N$ and assume $M = N \cap H_{\omega_2}$

- $M \in \mathcal{E}_{\aleph_0,\omega_2}$

Let $D \subseteq \mathbb{P} \cap N$ dense, and $q \leq p'$ (Note that $M \in \mathcal{M}_q$)

Lemma

By **Elementarity**, there exists $\hat{q} = \langle \hat{\mathcal{M}}_q, \hat{f}_q \rangle \in \mathbb{P} \cap N$

- $\mathbf{0} \quad \hat{q} \parallel q$

- $\hat{f}_a \supseteq f_a \upharpoonright N$

Let W be the set of all \in -chains $w = \langle N_1^w, \dots, N_l^w \rangle$ in $\hat{\mathcal{M}}_q \cup \mathcal{M}_q$ such that $N_l^w \in \mathcal{M}_q(\delta_M)$

$$q \upharpoonright N = \langle \mathcal{M}_q \upharpoonright M, f_q \upharpoonright M \rangle$$
 where

$$\mathcal{M}_q \upharpoonright N = \{ \varphi_{N_l^w, M}(N_i^w) \colon w \in W \text{ and } 1 \le i < l \}$$

Let W be the set of all \in -chains $w = \langle N_1^w, \dots, N_l^w \rangle$ in $\hat{\mathcal{M}}_q \cup \mathcal{M}_q$ such that $N_l^w \in \mathcal{M}_q(\delta_M)$

$$q \upharpoonright N = \langle \mathcal{M}_q \upharpoonright M, f_q \upharpoonright M \rangle$$
 where
$$\mathcal{M}_q \upharpoonright N = \{ \varphi_{N_l^w, M}(N_i^w) \colon w \in W \text{ and } 1 \le i < l \}$$

Lemma

 $q{\restriction} N \in \mathbb{P} \cap N$

Let W be the set of all \in -chains $w = \langle N_1^w, \dots, N_l^w \rangle$ in $\mathcal{M}_q \cup \mathcal{M}_q$ such that $N_l^w \in \mathcal{M}_q(\delta_M)$

$$q
vert N = \langle \mathcal{M}_q
vert M, f_q
vert M \rangle$$
 where
$$\mathcal{M}_q
vert N = \{ \varphi_{N_l^w, M}(N_i^w) \colon w \in W \text{ and } 1 \leq i < l \}$$

Lemma

 $q \upharpoonright N \in \mathbb{P} \cap N$

Let $r \in D$, **extends** $q \upharpoonright N$

$$s = \langle \mathcal{M}_s, f_s \rangle \text{ where}$$

$$\mathcal{M}_s = \mathcal{M}_r \cup \mathcal{M}_q \cup \{\varphi_{M,N}(K) : N \in \mathcal{M}_q(\delta_M) \text{ and } K \in \mathcal{M}_r\}$$

$$f_s = f_r \cup f_q \cup \{\langle \varphi_{N',N''}(\alpha), f_r(\alpha) \rangle :$$

$$\alpha \in \text{dom}(f_r), N', N'' \in \mathcal{M}_s \text{ and } \delta_{N'} = \delta_{N''}\}$$

Let W be the set of all \in -chains $w = \langle N_1^w, \dots, N_l^w \rangle$ in $\mathcal{M}_q \cup \mathcal{M}_q$ such that $N_l^w \in \mathcal{M}_q(\delta_M)$

$$q \upharpoonright N = \langle \mathcal{M}_q \upharpoonright M, f_q \upharpoonright M \rangle$$
 where
$$\mathcal{M}_q \upharpoonright N = \{ \varphi_{N_l^w,M}(N_i^w) \colon w \in W \text{ and } 1 \le i < l \}$$

Lemma

 $q \upharpoonright N \in \mathbb{P} \cap N$

Let $r \in D$, **extends** $q \upharpoonright N$

$$s = \langle \mathcal{M}_s, f_s \rangle$$
 where $\mathcal{M}_s = \mathcal{M}_r \cup \mathcal{M}_q \cup \{\varphi_{M,N}(K) : N \in \mathcal{M}_q(\delta_M) \text{ and } K \in \mathcal{M}_r\}$ $f_s = f_r \cup f_q \cup \{\langle \varphi_{N',N''}(\alpha), f_r(\alpha) \rangle : \alpha \in \text{dom}(f_r), N', N'' \in \mathcal{M}_s \text{ and } \delta_{N'} = \delta_{N''}\}$

(GCH) \mathbb{P} is \aleph_2 -c.c so preserves **all** cardinals

Lemma

Let $p \in M \cong M' \in \mathcal{E}_{\aleph_0, \aleph_2}$,

Lemma

Let $p \in M \cong M' \in \mathcal{E}_{\aleph_0, \aleph_2}$,

- $p_{M,M'} = \langle \mathcal{M}_p \cup \{M, M'\}, f_p \cup \{\langle \varphi_{M,M'}(\alpha), f_p(\alpha) \rangle : \alpha \in \text{dom}(f_p) \} \rangle$
- $p_{M,M'} \Vdash \check{\varphi}_{M,M'}[\dot{G} \cap \check{M}] = \dot{G} \cap \check{M}'$

Lemma

 \mathbb{P} preserves the CH

By **contradiction** assume $p \Vdash \langle \underline{r}_{\alpha} : \alpha < \omega_2 \rangle$ is a set of **reals** Let $p_{\alpha} \leq p$ and $p_{\alpha} \Vdash \underline{r}_{\alpha} \subseteq \check{\omega}$ Let $p_{\alpha}, p, \mathbb{P}, \underline{r}_{\alpha} \in M_{\alpha} \in \mathcal{E}_{\aleph_0, \theta}$ There is $\alpha < \beta < \omega_2$ s.t. $\langle M_{\alpha}, \in, \mathbb{P}, p_{\alpha}, \underline{r}_{\alpha} \rangle \cong \langle M_{\beta}, \in, \mathbb{P}, p_{\beta}, \underline{r}_{\beta} \rangle$ $p_{M_{\alpha}, M_{\beta}} \leq p_{\alpha}, p_{\beta}$ and $p_{M_{\alpha}, M_{\beta}} \Vdash \underline{r}_{\alpha} = \underline{r}_{\beta}$

Let $T \subseteq \kappa$ stationary. There are stationary sets $S_1, S_2 \subseteq T$ such that $S_1 \cap S_2 = \emptyset$

Let $T \subseteq \kappa$ stationary. There are stationary sets $S_1, S_2 \subseteq T$ such that $S_1 \cap S_2 = \emptyset$

Baumgartner, Harrington and Kleinberg (1976)

Let $T \subseteq \omega_1$ stationary. There is a forcing notion which adds a club $C \subseteq T$

Let $T \subseteq \kappa$ stationary. There are stationary sets $S_1, S_2 \subseteq T$ such that $S_1 \cap S_2 = \emptyset$

Baumgartner, Harrington and Kleinberg (1976)

Let $T \subseteq \omega_1$ stationary. There is a forcing notion which adds a club $C \subseteq T$

(1983) Abraham-Shelah

Let $S \subseteq \kappa$ fat stationary. There is a forcing notion which adds a club $C \subseteq S$ and adds no new sets of size $< \kappa$

Still adding club

2004 Mitchell, 2005 Friedman

A club in ω_2 with finite conditions

The first use of **side conditions** to add an object to a cardinal

 $> \aleph_1$

(15/21)

Still adding club

2004 Mitchell, 2005 Friedman

A club in ω_2 with finite conditions The first use of **side conditions** to add an object to a cardinal $> \aleph_1$

2014 Neeman

A club in ω_2 with finite condition contains \in -chains of elementary substructures of two types

Still adding club

2004 Mitchell, 2005 Friedman

A club in ω_2 with finite conditions The first use of **side conditions** to add an object to a cardinal $> \aleph_1$

2014 Neeman

A club in ω_2 with finite condition contains \in -chains of elementary substructures of two types

We (2024)?

A Generalization of Abraham's Forcing from another aspect

$$\mathcal{N} = \langle N_{\xi} : \xi \leq \alpha \rangle$$
 is an α -tower where

- $N_{\zeta} \in N_{\zeta+1}$

$$\mathcal{N} = \langle N_{\xi} : \xi \leq \alpha \rangle$$
 is an α -tower where

- $N_{\zeta} \in N_{\zeta+1}$
- $N_{\delta} = \bigcup_{\xi < \delta} N_{\xi} \text{ for limit } \delta$

q is $(\mathcal{N}, \mathbb{P})$ -generic, if it is (N_{ξ}, \mathbb{P}) -generic for every $\xi \leq \alpha$

$$\mathcal{N} = \langle N_{\xi} \colon \xi \leq \alpha \rangle$$
 is an α -tower where

- $N_{\zeta} \in N_{\zeta+1}$

q is $(\mathcal{N}, \mathbb{P})$ -generic, if it is (N_{ξ}, \mathbb{P}) -generic for every $\xi \leq \alpha$

 \mathbb{P} is α -proper, if for every α -tower \mathcal{N} , every $p \in N_0$ has an $(\mathcal{N}, \mathbb{P})$ -generic extension \mathbb{P} is $< \alpha$ -proper, if is β -proper for every $\beta < \alpha$

$$\mathcal{N} = \langle N_{\xi} \colon \xi \leq \alpha \rangle$$
 is an α -tower where

- $N_{\zeta} \in N_{\zeta+1}$
- $N_{\delta} = \bigcup_{\xi < \delta} N_{\xi} \text{ for limit } \delta$

q is $(\mathcal{N}, \mathbb{P})$ -generic, if it is (N_{ξ}, \mathbb{P}) -generic for every $\xi \leq \alpha$

 \mathbb{P} is α -proper, if for every α -tower \mathcal{N} , every $p \in N_0$ has an $(\mathcal{N}, \mathbb{P})$ -generic extension \mathbb{P} is $< \alpha$ -proper, if is β -proper for every $\beta < \alpha$

 α is **indecomposable**, if $\beta + \gamma < \alpha$, for **every** $\beta \le \gamma < \alpha$

Definition

 $p = \langle \mathcal{M}_p, f_p \rangle$ where

- $2 f_p: \mathcal{M}_p \longrightarrow H_{\omega_1}$ such that
 - $f_p(M_i^p) \subset M_{i+1}^p$ finite
 - $f_p(M^p_{n_p-1}) \subset H_{\omega_1}$ finite

Definition

$$p = \langle \mathcal{M}_p, f_p \rangle$$
 where

- $f_p: \mathcal{M}_p \longrightarrow H_{\omega_1}$ such that
- $f_p(M_i^p) \subset M_{i+1}^p$ finite
- $f_p(M^p_{n_p-1}) \subset H_{\omega_1}$ finite

$q \le p$ if and only if

- $\mathbf{0} \ \mathcal{M}_p \subseteq \mathcal{M}_q$
- $f_p(M) \subseteq f_q(M)$, for all $M \in \mathcal{M}_p$

$$C = \{\delta_M : \exists p \in G(M \in \mathcal{M}_p)\} \text{ is a } club \text{ in } \omega_1$$

P Adds a club

Theorem

$$C = \{\delta_M : \exists p \in G(M \in \mathcal{M}_p)\} \text{ is a } club \text{ in } \omega_1$$

Lemma

$$D_{\gamma} = \{q \in \mathbb{P} : \exists M \in \mathcal{M}_q(\gamma < \delta_M)\} \text{ is } \textbf{Dense}$$

$$(\forall p \in \mathbb{P})(\forall \gamma \in \omega_1)(\exists p' \leq p)(\exists N \in \mathcal{M}_{p'})(\gamma < \delta_N)$$

$$C = \{\delta_M : \exists p \in G(M \in \mathcal{M}_p)\} \text{ is a } club \text{ in } \omega_1$$

<u>Lemma</u>

$$D_{\gamma} = \{q \in \mathbb{P} : \exists M \in \mathcal{M}_q(\gamma < \delta_M)\} \text{ is } \textbf{Dense}$$

$$(\forall p \in \mathbb{P})(\forall \gamma \in \omega_1)(\exists p' \leq p)(\exists N \in \mathcal{M}_{p'})(\gamma < \delta_N)$$

Lemma

If $p \Vdash \check{\gamma} \notin \dot{C}$, then $p \Vdash \check{\gamma} \notin \lim \dot{C}$

$$\begin{split} &\delta_{M_i^{p'}} < \gamma < \delta_{M_{i+1}^{p'}} \Longrightarrow \ \gamma < \xi \in \delta_{M_{i+1}^{p'}} \\ &f_q(M_i^{p'}) = f_{p'}(M_i^{p'}) \cup \{\xi\} \\ &r \leq q \implies r \Vdash \dot{C} \cap (\delta_{M_i^{p'}}, \xi] = \emptyset \end{split}$$

 \mathbb{P} is proper

```
Let p \in M' \in \mathcal{E}_{\aleph_0,\theta} and M = M' \cap H_{\omega_1}

p' = \langle \mathcal{M}_p \cup \{M\}, f_p \cup \langle M, \emptyset \rangle \rangle

Let D \subseteq \mathbb{P} \cap M' and q \leq p'

q \upharpoonright M' = \langle \mathcal{M}_q \cap M, f_q \upharpoonright M \rangle

Let r \leq q \upharpoonright M'

s = \langle \mathcal{M}_r \cup \mathcal{M}_q, f_r \cup f_q \rangle
```

 \mathbb{P} is proper

Let
$$p \in M' \in \mathcal{E}_{\aleph_0,\theta}$$
 and $M = M' \cap H_{\omega_1}$
 $p' = \langle \mathcal{M}_p \cup \{M\}, f_p \cup \langle M, \emptyset \rangle \rangle$
Let $D \subseteq \mathbb{P} \cap M'$ and $q \leq p'$
 $q \upharpoonright M' = \langle \mathcal{M}_q \cap M, f_q \upharpoonright M \rangle$
Let $r \leq q \upharpoonright M'$
 $s = \langle \mathcal{M}_r \cup \mathcal{M}_q, f_r \cup f_q \rangle$

Theorem

 \mathbb{P} is **not** ω -proper

Let $\mathcal{N} = \langle N_i : i \leq \omega \rangle$ be an ω -tower and $p \in N_0$ If $q \leq p$ is $(\mathcal{N}, \mathbb{P})$ -generic, then $q \Vdash \dot{C}$ is **not** a club

Definition

Let $\alpha < \omega_1$ indecomposable

$$\mathbb{P}[\alpha] = \{p = \langle \mathcal{M}_p, f_p, \mathcal{W}_p \rangle\}$$
 where

- $\mathcal{M}_p = \langle M_{\xi}^p \in \mathcal{E}_{\aleph_0,\aleph_1} \colon \xi \leq \gamma_p < \alpha \rangle$ a **continuous** \in -chain
- $f_p: \mathcal{M}_p \longrightarrow H_{\omega_1} \text{ s.t.}$ $f_p(M_{\xi}^p) \subset M_{\xi+1}^p \text{ finite}$ $f_p(M_{\gamma}^p) \subset H_{\omega_1} \text{ finite}$
- $\mathcal{W}_p \subset \mathcal{M}_p \text{ s.t. } \forall N \in \mathcal{W}_p, p \upharpoonright N = \langle \mathcal{M}_p \cap N, f_p \upharpoonright N, \mathcal{W}_p \cap N \rangle \in N$

 $q \leq p$ if and only if

- $f_p(M) \subseteq f_q(M)$ for all $M \in \mathcal{M}_p$
- $\mathfrak{g} \mathcal{W}_p \subseteq \mathcal{W}_q$

Definition

Let $\alpha < \omega_1$ indecomposable

$$\mathbb{P}[\alpha] = \{p = \langle \mathcal{M}_p, f_p, \mathcal{W}_p \rangle\}$$
 where

- $\mathcal{M}_p = \langle M_{\xi}^p \in \mathcal{E}_{\aleph_0,\aleph_1} \colon \xi \leq \gamma_p < \alpha \rangle$ a **continuous** \in -chain
- $f_p: \mathcal{M}_p \longrightarrow H_{\omega_1} \text{ s.t.}$ $f_p(M_{\xi}^p) \subset M_{\xi+1}^p \text{ finite}$ $f_p(M_{\gamma}^p) \subset H_{\omega_1} \text{ finite}$
- $\mathcal{W}_p \subset \mathcal{M}_p \text{ s.t. } \forall N \in \mathcal{W}_p, p \upharpoonright N = \langle \mathcal{M}_p \cap N, f_p \upharpoonright N, \mathcal{W}_p \cap N \rangle \in N$

 $q \leq p$ if and only if

- $f_p(M) \subseteq f_q(M)$ for all $M \in \mathcal{M}_p$
- $\mathfrak{g} \mathcal{W}_p \subseteq \mathcal{W}_q$

 $C = \{\delta_M : \exists p \in G(M \in \mathcal{M}_p)\}$ is a **club** in ω_1

 $\mathbb{P}[\alpha]$ is $< \alpha$ -proper but not α -proper

 $\mathbb{P}[\alpha]$ is $< \alpha$ -proper but not α -proper

$$\mathcal{N} = \langle N_{\zeta} \colon \zeta \leq \beta < \alpha \rangle$$
 and $p \in \mathbb{P}[\alpha] \cap N_0$ fix $p' = \langle \mathcal{M}_{p'}, f_{p'}, \mathcal{W}_{p'} \rangle$ such that

 $\mathbb{P}[\alpha]$ is $< \alpha$ -proper but not α -proper

$$\mathcal{N} = \langle N_{\zeta} \colon \zeta \leq \beta < \alpha \rangle$$
 and $p \in \mathbb{P}[\alpha] \cap N_0$ fix $p' = \langle \mathcal{M}_{p'}, f_{p'}, \mathcal{W}_{p'} \rangle$ such that

- $f_{p'}(M_{\xi}^{p'}) = f_p(M_{\xi}^p) \text{ for } \xi \le \gamma_p$

p' is **strongly** $(N_{\zeta}, \mathbb{P}[\alpha])$ -generic if ζ is **non-limit** p' is $(N_{\delta}, \mathbb{P}[\alpha])$ -generic if δ is **limit**

 $\mathbb{P}[\alpha]$ is $< \alpha$ -proper but not α -proper

$$\mathcal{N} = \langle N_{\zeta} \colon \zeta \leq \beta < \alpha \rangle$$
 and $p \in \mathbb{P}[\alpha] \cap N_0$ fix $p' = \langle \mathcal{M}_{p'}, f_{p'}, \mathcal{W}_{p'} \rangle$ such that

- $f_{p'}(M_{\xi}^{p'}) = f_p(M_{\xi}^p) \text{ for } \xi \leq \gamma_p$

p' is **strongly** $(N_{\zeta}, \mathbb{P}[\alpha])$ -generic if ζ is **non-limit** p' is $(N_{\delta}, \mathbb{P}[\alpha])$ -generic if δ is **limit**

Let $\mathcal{N} = \langle N_{\xi} \colon \xi \leq \alpha \rangle$ is an α -tower and $p \in N_0$ If $q \leq p$ is $(\mathcal{N}, \mathbb{P}[\alpha])$ -generic, then $q \Vdash \dot{C}$ is **not** a **club**

References

- Hoseini Naveh, R. and Golshani, M. and Eslami, E., Adding highly generic subsets of ω_2 , Mathematical Logic Quarterly, 70(1), 126-133, 2024
- Hoseini Naveh, R. and Golshani, M., Adding Abraham clubs and α -properness, Proceedings of the American Mathematical Society, submitted, 2024
- Abraham, U. and Shelah, S., Forcing Closed Unbounded Sets, The Journal of Symbolic Logic, 48(3), 643–657, 1983
- Neeman, I., Forcing with Sequences of Models of Two Types, Notre Dame Journal of Formal Logic, 55(2), 265 -298, 2014
- Borisa Kuzeljevic and Stevo Todorčević, Forcing with Matrices of Countable Elementary Submodels, Proceedings of the American Mathematical Society, 145(5), 2211-2222, 2017

Thank You