Two side conditions forcing preserving the

GCH

Rouholah HoseiniNaveh

(joint work with Mohammad Golshani)

October 26, 2022

RIMS Set Theory Workshop

Kyoto University, Japan

ℵ₁-PRESERVING FORCINGS

Proper Forcings

A forcing notion \mathbb{P} is proper if for every infinite X and every stationary set $S \subseteq [X]^{\leq \aleph_0}$, S remains stationary in V[G]

- Shelah: If \mathbb{P} is proper then forcing with \mathbb{P} preserves \aleph_1
- Shelah: Countable support iteration of proper forcing notions is proper

PROPERNESS & STRONGLY PROPERNESS

Let θ be a large enough regular cardinal, \mathbb{P} a forcing notion and $\langle N, \in, <_w \rangle \prec \langle H(\theta), \in, \leq_w \rangle$ countable with $\mathbb{P} \in N$

q is $(N,\mathbb{P})\text{-generic condition if for every dense open set }D\subset\mathbb{P},$ if

 $D \in N$ then $D \cap N$ is predense below q

 $\mathbb P$ is proper iff for all such N, every $p\in \mathbb P\cap N$ has an $(N,\mathbb P)$ -generic extension

 $q\in\mathbb{P}$ is $(N,\mathbb{P})\text{-strongly generic condition if every dense open set$

 $D \subseteq \mathbb{P} \cap N$ is predense below q

 \mathbb{P} is strongly proper iff for all such N, every $p \in \mathbb{P} \cap N$ has an

 (N, \mathbb{P}) -strongly generic extension

200

THE ∈-COLLAPSE FORCING

Todorcevic 1984

 $\mathbb{P}_{\in}(\theta)$ is the set of all finite \in -chains of countable elementary submodels of $\langle H(\theta), \in, \leq_w \rangle$ with the inverse inclusion

Let $\kappa > \theta$ be a large enough regular cardinal and

$$\langle M', \in, <_w \rangle \prec \langle H(\kappa), \in, <_w \rangle$$
 with $\theta \in M'$ and $M = M' \cap H(\theta)$

- If $M \in q$, then $q \cap M' \in \mathbb{P}_{\in}(\theta) \cap M'$
- If $p \in \mathbb{P}_{\in}(\theta) \cap M'$, then $p \cup \{M\} \in \mathbb{P}_{\in}(\theta)$.

Applications

PFA implies $OGA, PID, BA(\omega_1)$

MATRIX ∈-COLLAPSE FORCING

Todorcevic 2017

$$\mathcal{S} = \{ M \in [H(\theta)]^{\aleph_0} : \langle M, \in, <_w \rangle \prec \langle H(\theta), \in, <_w \rangle \}$$

$$\mathbb{P}_{\in}^{\mathcal{M}} = \{ p \subset \mathcal{S} \mid |p| < \aleph_0 \} \text{ such that }$$

- If $M, N \in p$ and $M \cap \omega_1 = \delta_M = \delta_N = N \cap \omega_1$, then $\langle M, \in, <_w \rangle \simeq \langle N, \in, <_w \rangle$
- If $M \in p$ and $\delta \in dom(p)$ such that $\delta_M < \delta$, then $\exists N \in p(\delta) \ (M \in N)$.

where
$$p(\alpha) = \{M \in p : \delta_M = \alpha\}$$
 and $dom(p) = \{\alpha : p(\alpha) \neq \emptyset\}.$

 $\mathbb{P}^{\mathcal{M}}_{\in}$ is strongly proper and forces the Continuum Hypothesis

Aplications

• In V[G] there is a Kurepa tree with exactly ω_2 branches that does not contain Aronszajn subtrees

Gitik's question (2017)

Let $\kappa \geq \aleph_2$ be a regular cardinal. Is there a cardinal and GCH preserving extension in which there exists a set $A \subseteq \kappa$ of size κ such that for all countable set $X \in \mathscr{P}(\kappa) \cap V$, $A \cap X$ and $X \setminus A$ are non-empty?

For all κ , $\mathbb{P}_{\kappa} = \{p : \kappa \longrightarrow 2 : |p| < \aleph_0\} \cong Add(\omega, \kappa)$ forces the existens of such set A, but it also forces $2^{\aleph_0} \ge \kappa$. So for $\kappa \ge \aleph_2$ the CH fails

Theorem (R.Hoseininaveh-M.Golshani)

The answer to Gitik's question is Yes for $\kappa = \aleph_2$.

Definition

Let $p = \langle \mathcal{M}_p, f_p \rangle \in \mathbb{P}$ iff

- $\mathcal{M}_p \in \mathbb{P}^M_{\in}$
- $f_p: \omega_2 \longrightarrow 2$ is a finite partial function
- Suppose $M, N \in \mathcal{M}_p$ and $\delta_M = \delta_N$. for all $\alpha < \omega_2$, if $\alpha \in \text{dom}(f_p) \cap M$, then $\varphi_{M,N}(\alpha) \in \text{dom}(f_p)$ and $f_p(\varphi_{M,N}(\alpha)) = f_p(\alpha)$

Theorem

 \mathbb{P} is strongly proper

Theorem

 \mathbb{P} has $\aleph_2.c.c$

Theorem

 \mathbb{P} preserves the CH

Let $X \in \mathcal{P}(\omega_2) \cap V$ be countable.

 $D_X = \{ p \in \mathbb{P} : \exists \alpha, \beta \in \text{dom}(f_p) \cap X \text{ s.t. } f_p(\alpha) = 1 \land f_p(\beta) = 0 \} \text{ is a dense subset of } \mathbb{P}.$

SEQUENCES OF MODELS OF TWO TYPES

Itay Neeman

$$\kappa < \lambda < \theta$$

- \mathcal{T} is a collection of transitive $\langle W, \in, <_w \rangle \prec \langle H(\theta), \in, <_w \rangle$, and \mathcal{S} is a collection of $\langle M, \in, <_w \rangle \prec \langle H(\theta), \in, <_w \rangle$ with $\kappa \subset M$ and $|M| < \lambda$. All elements of $\mathcal{S} \cup \mathcal{T}$ belong to $H(\theta)$ and contain $\{\kappa, \lambda\}$
- If $M_1, M_2 \in \mathcal{S}$ and $M_1 \in M_2$ then $M_1 \subset M_2$
- If $M \in \mathcal{S}$ and $W \in M \cap \mathcal{T}$ then $(M \cap W) \in W \cap \mathcal{S}$
- Each $W \in \mathcal{T}$ is closed under sequences of length $\leq \kappa$ in $H(\theta)$

SEQUENCES OF MODELS OF TWO TYPES

Itay Neeman

$$\mathbb{P}_{\kappa,\lambda}^{\mathcal{S},\mathcal{T}} = \{ \langle M_{\xi} : \xi < \gamma \rangle \in H(\theta) \mid \gamma < \kappa \} \text{ such that }$$

- $\forall \xi, M_{\xi} \in \mathcal{S} \cup \mathcal{T}$
- $\forall \zeta < \gamma$, $\{\xi < \zeta : M_{\xi} \in M_{\zeta}\}$ is cofinal in ζ
- $\forall \zeta < \gamma, \ \langle M_{\xi} : \xi < \zeta \land M_{\xi} \in M_{\zeta} \rangle \in M_{\zeta}$
- The sequence is closed under intersections

TWO APPLICATIONS

$$S = \{ M \in [H(\theta)]^{\aleph_0} : \langle M, \in, <_w \rangle \prec \langle H(\theta), \in, <_w \rangle \}$$
$$\mathcal{T} = \{ H(\lambda) : \langle H(\lambda), \in, <_w \rangle \prec \langle H(\theta), \in, <_w \rangle \land cf(\lambda) > \omega \}$$

1

$$\mathbb{P}_{\in}^{\mathcal{S},\mathcal{T}}$$
 preserves \aleph_1

If λ be a cardinal such that $\omega_1 < \lambda < \theta$, then λ is collapsed to ω_1

If \mathcal{T} is a stationary set on $[H(\theta)]^{<\theta}$ then $\mathbb{P}_{\in}^{\mathcal{S},\mathcal{T}} \Vdash \theta = \omega_2$

Let θ a Supercompact cardinal and let $J:\theta\longrightarrow H(\theta)$ be the Laver function

 $\mathbb{P}_{\in}^{\mathcal{S},\mathcal{T}}(J)$ is an iterated forcing, constructed using $\mathbb{P}_{\in}^{\mathcal{S},\mathcal{T}}.$ It satisfies:

- (1) preserves \aleph_1
- (2) forces that $\theta = \aleph_2$
- (3) Gives a new proof for the consistency of *PFA*
- (4) V[G] is a model of PFA in which PFA^+ fails

THE QUESTION

The Problem

The forcing of Neeman does not preserve *GCH*. Can we define a version of it preserving the *GCH*?

The Idea

Replacing the linear part of small nodes with matrices of the same types of models

Notations

Let $<_w$ be a well-ordering of $H(\omega_2)$. We will fix the following two families:

$$S = \{ M \in [H(\omega_2)]^{\aleph_0} : \langle M, \in, <_w \rangle \prec \langle H(\omega_2), \in, <_w \rangle \}$$

$$\mathcal{T} = \{ X \in [H(\omega_2)]^{\aleph_1} : \langle X, \in, <_w \rangle \prec \langle H(\omega_2), \in, <_w \rangle \wedge^{\omega} X \subset X \}$$

Notations

We use:

- M, N, L and K for elements of S which are called small nodes
- W, X, Y and Z for elements of T which are called transitive nodes
- \bullet A, B, C and D when the types are not important
- Let $\langle A,\in,<_w\rangle$ and $\langle B,\in,<_w\rangle$ be isomorphic. We denote this unique isomorphism by $\varphi_{A,B}:A\longrightarrow B$

Notations

- For $A, B \in \mathcal{S} \cup \mathcal{T}$ with $A \ncong B$ we say that $A \in^* B$, if there is an \in -path from A to B; i.e. there are $C_0, C_1, \ldots, C_n \in \mathcal{S} \cup \mathcal{T}$ such that $C_i \in C_{i+1}$ for all i < n and $A = C_0, B = C_n$.
- Given $A, B \in p \subset \mathcal{S} \cup \mathcal{T}$, $(A, B)_p = \{C \in p : A \in^* C \in^* B\}$
- Given $A \in p \subset \mathcal{S} \cup \mathcal{T}$, $p_{< A} = \{B \in p : B \in^* A\}$

 $\mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}}$ is the set of all finite $p \subset \mathcal{S} \cup \mathcal{T}$ such that the following conditions hold.

- (P1) If $A, B \in p$ and $A \ncong B$, then either:
 - (i) there exists $B' \in p$ such that $B \cong B'$ and $A \in B'$ in p; or
 - (ii) there exists $A' \in p$ such that $A \cong A'$ and $B \in A'$ in p;
- (P2) If $M, N \in p \cap S$, $\delta_M = \delta_N$ and $p_{< M} \cap T = p_{< N} \cap T$, then $M \cong N$. Furthermore for every $X \in (M \cap N) \cap T$, $\langle M, \in, <_w, X \cap M \rangle$ is isomorphic to $\langle N, \in, <_w, X \cap N \rangle$;
- (P3) If $W, X \in p \cap T$ and $\delta_W = \delta_X$, then X = W;
- (P4) If $A \in^{\star} B$, then $A \cap B \in p$. Further emore if $A \in^{\star} B \in^{\star} C$, then either $A = B \cap C$ or $A \in^{\star} B \cap C$ or $B \cap C \in^{\star} A$

Lemma

For all $M \in \mathcal{S}$ and $X \in \mathcal{T}$, $\delta_{X \cap M} = \delta_M$

If $X \in {}^{\star} M$ in a condition p, then $X \cap M$ can not be isomorphic to M.

Fact

If $A \in {}^\star M$ it is not necessary to have $A \in M$

If $M \in p \in \mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}}$, it is not necessarily the case that $p \cap M$ is a condition

If $M \prec H(\omega_2)$ and $p \in \mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}} \cap M$ it is not always true that $p \cup \{M\} \in \mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}}$.

Lemma

Let θ be a large enough regular cardinal, M' be a countable elementary submodel of $H(\theta)$, Let $q \in \mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}}$ be such that $M' \cap H(\omega_2) = M \in q$.

Then there is \hat{q} such that:

- (1) $\hat{q} \in \mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}} \cap M;$
- (2) $dom(\hat{q}) = dom(q \cap M);$
- (3) $q \cap M \subseteq \hat{q}$;
- (4) If $\alpha \in \text{dom}(\hat{q})$ and $N_1 \in q(\alpha) \cap \mathcal{S}$, $N_2 \in \hat{q}(\alpha) \cap \mathcal{S}$, and $N_1 \cap \mathcal{T} = N_2 \cap \mathcal{T}$, then $N_1 \cong N_2$;
- (5) If $X_1 \in \hat{q} \cap \mathcal{T}$, $X_2 \in q \cap \mathcal{T}$ and $\delta_{X_1} = \delta_{X_2}$, then $X_1 = X_2$;
- (6) $\hat{q} \cap \mathcal{T} = q \cap M \cap \mathcal{T}$
- (7) $\hat{q} \cup q \in \mathbb{P}_{\epsilon, \mathcal{M}}^{\mathcal{S}, \mathcal{T}}$

Let $q \in \mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}}$ be such that $M' \cap H(\omega_2) = M \in q$ and let $\mathcal{F} = \{ w = \langle A_l^w \in A_{l-1}^w \in \cdots \in A_0^w \rangle \}$ be such that $A_i^w \in q \cup \hat{q}, A_0^w \in q(\delta_M)$ with $A_0^w \cong M$.

 $q \upharpoonright M = \{ \varphi_{A_n^w, B_n}(A_{n+1}^w) : w \in \mathcal{F} \land n < l \}$ where $B_0 = M$ and $B_n \in M$ for n > 0 is either an element of $q \cup \hat{q}$ or is of the form $\varphi_{A_k^{w'}, B_k}(A_{k+1}^{w'})$ for some $w' \in \mathcal{F}$.

Lemma

Let M' be a countable elementary submodel of $H(\theta)$, with

 $\mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}}, \mathcal{S}, \mathcal{T} \in M'$ for some $\theta > \omega_2$, a large enough regular cardinal. Let $q \in \mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}}$ be such that $M' \cap H(\omega_2) = M \in q$.

- (1) $q_{\leq M} \cup \hat{q} \subseteq q \upharpoonright M;$
- (2) $X \in (q | M) \cap T$ iff X is a transitive nodes of q which is before M;
- (3) $q \upharpoonright M \in \mathbb{P}^{\mathcal{S},\mathcal{T}}_{\in,\mathcal{M}};$
- (4) $(q \upharpoonright M) \cap M \in \mathbb{P}_{\in M}^{\mathcal{S}, \mathcal{T}} \cap M$.

Lemma

Let $q \in \mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}}$ and $M \in q \cap \mathcal{S}$. If $r \leq (q \upharpoonright M) \cap M$ and $r \in M$, then $t = (q \upharpoonright M) \cup r \cup q$ satisfies P1 to P3.

For each $M' \in q$ with $M \cong M'$, first take $X \in r \setminus (q \upharpoonright M) \cap \mathcal{T}$ such that $(X, M')_t \cap q \upharpoonright M \cap \mathcal{T} \neq \emptyset$. Let X' be the smallest element of this set, then $X \in M' \cap X'$.

Define

$$E_{M'}(X) = [M' \cap X', X')_{q \cup q \uparrow M}$$

$$F_{M'}(X) = \{X \cap N : N \in E_{M'}(X)\}$$

Where $X \in r \setminus (q \upharpoonright M) \cap \mathcal{T}$ is such that $(X, M')_t \cap q \upharpoonright M \cap \mathcal{T} = \emptyset$

Define

 $E_{M'}(X)$ is the largest interval of small nodes of q starting from every

$$M'\cong M$$
.

$$F_{M'}(X) = \{X \cap N : N \in E_{M'}(X)\}$$

Now we define $s = t \cup \bigcup_{X \in r \setminus (q \upharpoonright M) \cap \mathcal{T}} F_{M'}(X)$.

Lemma

 $s \in \mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}}$ and extends q and r.

Theorem

 $\mathbb{P}_{\in \mathcal{M}}^{\mathcal{S}, \mathcal{T}}$ is strongly proper.

Proof.

Let θ be a large enough regular cardinal and $M' \prec H(\theta)$ countable with $p \in \mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}} \cap M'$. Let $M = M' \cap H(\omega_2)$ and $p' = \{M\}$. then $p \in M$ and extends $p' \cap M$. Hence there is $q \in \mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}}$ such that q extends both p and p'. We can find $\hat{q}, q \upharpoonright M$ as before, so suppose $r \in D \subset \mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}} \cap M'$ which $r \leq (q \upharpoonright M \cap M)$. In this way, we can find s which extends both r and q. So q is a $(\mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}}, M')$ -strongly generic conditin. \square

Theorem

Forcing with $\mathbb{P}_{\in,\mathcal{M}}^{\mathcal{S},\mathcal{T}}$ preserves the GCH.

Thank You