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ℵ1-PRESERVING FORCINGS

Proper Forcings
A forcing notion P is proper if for every infinite X and every

stationary set S ⊆ [X]≤ℵ0 , S remains stationary in V[G]

Shelah: If P is proper then forcing with P preserves ℵ1

Shelah: Countable support iteration of proper forcing notions is

proper
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PROPERNESS & STRONGLY PROPERNESS

Let θ be a large enough regular cardinal, P a forcing notion and

⟨N,∈,≤w⟩ ≺ ⟨H(θ),∈,≤w⟩ countable with P ∈ N

q is (N,P)-generic condition if for every dense open set D ⊂ P, if

D ∈ N then D ∩ N is predense below q

P is proper iff for all such N, every p ∈ P ∩ N has an (N,P)-generic

extension

q ∈ P is (N,P)-strongly generic condition if every dense open set

D ⊆ P ∩ N is predense below q

P is strongly proper iff for all such N, every p ∈ P ∩ N has an

(N,P)-strongly generic extension
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THE ∈-COLLAPSE FORCING
Todorcevic 1984

P∈(θ) is the set of all finite ∈-chains of countable elementary

submodels of ⟨H(θ),∈,≤w⟩ with the inverse inclusion

Let κ > θ be a large enough regular cardinal and

⟨M′,∈, <w⟩ ≺ ⟨H(κ),∈, <w⟩ with θ ∈ M′ and M = M′ ∩ H(θ)

If M ∈ q, then q ∩ M′ ∈ P∈(θ) ∩ M′

If p ∈ P∈(θ) ∩ M′, then p ∪ {M} ∈ P∈(θ).

Applications
PFA implies OGA,PID,BA(ω1)
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MATRIX ∈-COLLAPSE FORCING
Todorcevic 2017

S = {M ∈ [H(θ)]ℵ0 : ⟨M,∈, <w⟩ ≺ ⟨H(θ),∈, <w⟩}

PM
∈ = {p ⊂ S | |p| < ℵ0} such that

If M,N ∈ p and M ∩ ω1 = δM = δN = N ∩ ω1, then

⟨M,∈, <w⟩ ≃ ⟨N,∈, <w⟩

If M ∈ p and δ ∈ dom(p) such that δM < δ, then

∃N ∈ p(δ) (M ∈ N).

where p(α) = {M ∈ p : δM = α} and dom(p) = {α : p(α) ̸= ∅}.

PM
∈ is strongly proper and forces the Continuum Hypothesis
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Aplications

In V[G] there is a Kurepa tree with exactly ω2 branches that

does not contain Aronszajn subtrees

Gitik’s question (2017)
Let κ ≥ ℵ2 be a regular cardinal. Is there a cardinal and GCH

preserving extension in which there exists a set A ⊆ κ of size κ such

that for all countable set X ∈ P(κ) ∩ V, A ∩ X and X\A are

non-empty?
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For all κ, Pκ = {p : κ −→ 2 : |p| < ℵ0} ∼= Add(ω, κ) forces the existens

of such set A, but it also forces 2ℵ0 ≥ κ. So for κ ≥ ℵ2 the CH fails

Theorem (R.Hoseininaveh-M.Golshani)
The answer to Gitik’s question is Yes for κ = ℵ2.

Definition
Let p = ⟨Mp, fp⟩ ∈ P iff

Mp ∈ PM
∈

fp : ω2 −→ 2 is a finite partial function

Suppose M,N ∈ Mp and δM = δN. for all α < ω2, if

α ∈ dom(fp) ∩ M, then φM,N(α) ∈ dom(fp) and

fp(φM,N(α)) = fp(α)
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Theorem
P is strongly proper

Theorem
P has ℵ2.c.c

Theorem
P preserves the CH

Let X ∈ P(ω2) ∩ V be countable.

DX = {p ∈ P : ∃α, β ∈ dom(fp) ∩ X s.t. fp(α) = 1 ∧ fp(β) = 0} is a

dense subset of P.
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SEQUENCES OF MODELS OF TWO TYPES
Itay Neeman

κ < λ < θ

T is a collection of transitive ⟨W,∈, <w⟩ ≺ ⟨H(θ),∈, <w⟩, and S

is a collection of ⟨M,∈, <w⟩ ≺ ⟨H(θ),∈, <w⟩ with κ ⊂ M and

|M| < λ. All elements of S ∪ T belong to H(θ) and contain {κ, λ}

If M1,M2 ∈ S and M1 ∈ M2 then M1 ⊂ M2

If M ∈ S and W ∈ M ∩ T then (M ∩ W) ∈ W ∩ S

Each W ∈ T is closed under sequences of lenght ≤ κ in H(θ)
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SEQUENCES OF MODELS OF TWO TYPES
Itay Neeman

PS,T
κ,λ = {⟨Mξ : ξ < γ⟩ ∈ H(θ) |γ < κ} such that

∀ξ, Mξ ∈ S ∪ T

∀ζ < γ, {ξ < ζ : Mξ ∈ Mζ} is cofinal in ζ

∀ζ < γ, ⟨Mξ : ξ < ζ ∧ Mξ ∈ Mζ⟩ ∈ Mζ

The sequence is closed under intersections
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TWO APPLICATIONS

S = {M ∈ [H(θ)]ℵ0 : ⟨M,∈, <w⟩ ≺ ⟨H(θ),∈, <w⟩}

T = {H(λ) : ⟨H(λ),∈, <w⟩ ≺ ⟨H(θ),∈, <w⟩ ∧ cf(λ) > ω}

1
PS,T
∈ preserves ℵ1

If λ be a cardinal such that ω1 < λ < θ, then λ is collapsed to ω1

If T is a stationary set on [H(θ)]<θ then PS,T
∈ ⊩ θ = ω2
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2
Let θ a Supercompact cardinal and let J : θ −→ H(θ) be the Laver

function

PS,T
∈ (J) is an iterated forcing, constructed using PS,T

∈ . It satisfies:

(1) preserves ℵ1

(2) forces that θ = ℵ2

(3) Gives a new proof for the consistency of PFA

(4) V[G] is a model of PFA in which PFA+ fails
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THE QUESTION

The Problem
The forcing of Neeman does not preserve GCH. Can we define a

version of it preserving the GCH?

The Idea
Replacing the linear part of small nodes with matrices of the same

types of models
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Notations

Let <w be a well-ordering of H(ω2). We will fix the following two

families:

S = {M ∈ [H(ω2)]
ℵ0 : ⟨M,∈, <w⟩ ≺ ⟨H(ω2),∈, <w⟩}

T = {X ∈ [H(ω2)]
ℵ1 : ⟨X,∈, <w⟩ ≺ ⟨H(ω2),∈, <w⟩ ∧ ωX ⊂ X}
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Notations

We use:

M,N,L and K for elements of S which are called small nodes

W,X,Y and Z for elements of T which are called transitive nodes

A,B,C and D when the types are not important

Let ⟨A,∈, <w⟩ and ⟨B,∈, <w⟩ be isomorphic. We denote this

unique isomorphism by φA,B : A −→ B
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Notations

For A,B ∈ S ∪ T with A ≇ B we say that A ∈⋆ B, if there is an

∈-path from A to B; i.e. there are C0,C1, . . . ,Cn ∈ S ∪ T such

that Ci ∈ Ci+1 for all i < n and A = C0,B = Cn.

Given A,B ∈ p ⊂ S ∪ T , (A,B)p = {C ∈ p : A ∈⋆ C ∈⋆ B}

Given A ∈ p ⊂ S ∪ T , p<A = {B ∈ p : B ∈⋆ A}
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PS,T
∈,M is the set of all finite p ⊂ S ∪ T such that the following

conditions hold.

(P1) If A,B ∈ p and A ≇ B, then either:

(i) there exists B′ ∈ p such that B ∼= B′ and A ∈⋆ B′ in p; or

(ii) there exists A′ ∈ p such that A ∼= A′ and B ∈⋆ A′ in p;

(P2) If M,N ∈ p ∩ S, δM = δN and p<M ∩ T = p<N ∩ T , then M ∼= N.

Furthermore for every X ∈ (M ∩ N) ∩ T , ⟨M,∈, <w,X ∩ M⟩ is

isomorphic to ⟨N,∈, <w,X ∩ N⟩;

(P3) If W,X ∈ p ∩ T and δW = δX, then X = W;

(P4) If A ∈⋆ B, then A ∩ B ∈ p. Furtheremore if A ∈⋆ B ∈⋆ C, then

either A = B ∩ C or A ∈⋆ B ∩ C or B ∩ C ∈⋆ A
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Lemma
For all M ∈ S and X ∈ T , δX∩M = δM

If X ∈⋆ M in a condition p, then X ∩ M can not be isomorphic to M.

Fact
If A ∈⋆ M it is not necessary to have A ∈ M

If M ∈ p ∈ PS,T
∈,M, it is not necessarily the case that p ∩ M is a

condition

If M ≺ H(ω2) and p ∈ PS,T
∈,M ∩ M it is not always true that

p ∪ {M} ∈ PS,T
∈,M.
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Lemma
Let θ be a large enough regular cardinal, M′ be a countable elementary

submodel of H(θ), Let q ∈ PS,T
∈,M be such that M′ ∩ H(ω2) = M ∈ q.

Then there is q̂ such that:

(1) q̂ ∈ PS,T
∈,M ∩ M;

(2) dom(q̂) = dom(q ∩ M);

(3) q ∩ M ⊆ q̂;

(4) If α ∈ dom(q̂) and N1 ∈ q(α) ∩ S,N2 ∈ q̂(α) ∩ S, and

N1 ∩ T = N2 ∩ T , then N1 ∼= N2;

(5) If X1 ∈ q̂ ∩ T ,X2 ∈ q ∩ T and δX1 = δX2 , then X1 = X2;

(6) q̂ ∩ T = q ∩ M ∩ T

(7) q̂ ∪ q ∈ PS,T
∈,M
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Let q ∈ PS,T
∈,M be such that M′ ∩ H(ω2) = M ∈ q and let

F = {w = ⟨Aw
l ∈ Aw

l−1 ∈ · · · ∈ Aw
0 ⟩} be such that

Aw
i ∈ q ∪ q̂,Aw

0 ∈ q(δM) with Aw
0
∼= M.

q↾M = {φAw
n ,Bn(Aw

n+1) : w ∈ F ∧ n < l} where B0 = M and Bn ∈⋆ M

for n > 0 is either an element of q ∪ q̂ or is of the form φAw′
k ,Bk

(Aw′

k+1)

for some w′ ∈ F .
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Lemma
Let M′ be a countable elementary submodel of H(θ), with

PS,T
∈,M,S, T ∈ M′ for some θ > ω2, a large enough regular cardinal. Let

q ∈ PS,T
∈,M be such that M′ ∩ H(ω2) = M ∈ q.

(1) q<M ∪ q̂ ⊆ q↾M;

(2) X ∈ (q↾M) ∩ T iff X is a transitive nodes of q which is before M;

(3) q↾M ∈ PS,T
∈,M;

(4) (q↾M) ∩ M ∈ PS,T
∈,M ∩ M.

Lemma
Let q ∈ PS,T

∈,M and M ∈ q ∩ S. If r ≤ (q↾M) ∩ M and r ∈ M, then

t = (q↾M) ∪ r ∪ q satisfies P1 to P3.
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For each M′ ∈ q with M ∼= M′, first take X ∈ r\(q↾M) ∩ T such that

(X,M′)t ∩ q↾M ∩ T ̸= ∅. Let X′ be the smallest element of this set,

then X ∈ M′ ∩ X′.

Define
EM′(X) = [M′ ∩ X′,X′)q∪q↾M

FM′(X) = {X ∩ N : N ∈ EM′(X)}

Where X ∈ r\(q↾M) ∩ T is such that (X,M′)t ∩ q↾M ∩ T = ∅

Define
EM′(X) is the largest interval of small nodes of q starting from every

M′ ∼= M.

FM′(X) = {X ∩ N : N ∈ EM′(X)}
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Now we define s = t ∪
∪

X∈r\(q↾M)∩T FM′(X).

Lemma
s ∈ PS,T

∈,M and extends q and r.

Theorem
PS,T
∈,M is strongly proper.

Proof.
Let θ be a large enough regular cardinal and M′ ≺ H(θ) countable

with p ∈ PS,T
∈,M ∩ M′. Let M = M′ ∩ H(ω2) and p′ = {M}. then p ∈ M

and extends p′ ∩ M. Hence there is q ∈ PS,T
∈,M such that q extends both

p and p′. We can find q̂, q↾M as before, so suppose r ∈ D ⊂ PS,T
∈,M ∩ M′

which r ≤ (q↾M ∩ M). In this way, we can find s which extends both r

and q. So q is a (PS,T
∈,M,M′)-strongly generic conditin.
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Theorem
Forcing with PS,T

∈,M preserves the GCH.
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Thank You
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