Adding Abraham clubs and α -properness

Rouholah Hoseini Naveh Joint with Mohammad Golshani

Seminar on Mathematical Logic and its Applications IPM - 1403/3/9

club

Let κ be a regular uncountable cardinal. A set $C \subseteq \kappa$ is a closed unbounded subset (club) in κ if:

club

Let κ be a regular uncountable cardinal. A set $C \subseteq \kappa$ is a closed unbounded subset (club) in κ if:

1. C is unbounded in κ

club

Let κ be a regular uncountable cardinal. A set $C \subseteq \kappa$ is a closed unbounded subset (club) in κ if:

1. C is unbounded in κ i.e. $\sup(C \cap \kappa) = \kappa$;

club

Let κ be a regular uncountable cardinal. A set $C \subseteq \kappa$ is a closed unbounded subset (club) in κ if:

- 1. C is unbounded in κ i.e. $\sup(C \cap \kappa) = \kappa$;
- 2. C contains all its limit points

club

Let κ be a regular uncountable cardinal. A set $C \subseteq \kappa$ is a closed unbounded subset (club) in κ if:

- 1. C is unbounded in κ i.e. $\sup(C \cap \kappa) = \kappa$;
- 2. C contains all its limit points i.e. $\forall \alpha < \kappa \sup(C \cap \alpha) \in C$.

club

Let κ be a regular uncountable cardinal. A set $C \subseteq \kappa$ is a closed unbounded subset (club) in κ if:

- 1. C is unbounded in κ i.e. $\sup(C \cap \kappa) = \kappa$;
- 2. C contains all its limit points i.e. $\forall \alpha < \kappa \sup(C \cap \alpha) \in C$.

Stationary

A set $S \subseteq \kappa$ is **stationary** if $S \cap C \neq \emptyset$ for every club C of κ .

club

Let κ be a regular uncountable cardinal. A set $C \subseteq \kappa$ is a closed unbounded subset (club) in κ if:

- 1. C is unbounded in κ i.e. $\sup(C \cap \kappa) = \kappa$;
- 2. C contains all its limit points i.e. $\forall \alpha < \kappa \sup(C \cap \alpha) \in C$.

Stationary

A set $S \subseteq \kappa$ is **stationary** if $S \cap C \neq \emptyset$ for every club C of κ .

Notation:
$$[X]^{\kappa}$$

$$\{Y \subseteq X \colon |Y| = \kappa\}, \text{ for a cardinal } \kappa \leq |X|$$

club

Let κ be a regular uncountable cardinal. A set $C \subseteq \kappa$ is a closed unbounded subset (club) in κ if:

- 1. C is unbounded in κ i.e. $\sup(C \cap \kappa) = \kappa$;
- 2. C contains all its limit points i.e. $\forall \alpha < \kappa \sup(C \cap \alpha) \in C$.

Stationary

A set $S \subseteq \kappa$ is **stationary** if $S \cap C \neq \emptyset$ for every club C of κ .

Notation:
$$[X]^{\kappa}$$

$$\{Y \subseteq X \colon |Y| = \kappa\}$$
, for a cardinal $\kappa \le |X|$

Proper Forcing

Shelah: A notion of forcing \mathbb{P} is **proper** if for every uncountable cardinal λ , every stationary subset of $[\lambda]^{\aleph_0}$ remains stationary in the generic extension every countable set of ordinals in the extension is covered by a countable set of

Let λ be a regular cardinal. H_{λ} is the collection of all sets hereditarily of cardinality less than λ ,

Let λ be a regular cardinal. H_{λ} is the collection of all sets hereditarily of cardinality less than λ , i.e. $\{x : |trcl(x)| < \lambda\}$

Let λ be a regular cardinal. H_{λ} is the collection of all sets hereditarily of cardinality less than λ , i.e. $\{x : |trcl(x)| < \lambda\}$

Master condition

Let $M \prec H_{\lambda}$. A condition $q \in \mathbb{P}$ is (M, \mathbb{P}) -generic if for every dense open $D \subseteq \mathbb{P}$ with $D \in M$, the set $D \cap M$ is predense below q,

Let λ be a regular cardinal. H_{λ} is the collection of all sets hereditarily of cardinality less than λ , i.e. $\{x : |trcl(x)| < \lambda\}$

Master condition

Let $M \prec H_{\lambda}$. A condition $q \in \mathbb{P}$ is (M, \mathbb{P}) -generic if for every dense open $D \subseteq \mathbb{P}$ with $D \in M$, the set $D \cap M$ is predense below q, i.e. $(\forall q' \leq q)(\exists r \in D \cap M)(\exists s \in \mathbb{P})(s \leq q', r)$

Let λ be a regular cardinal. H_{λ} is the collection of all sets hereditarily of cardinality less than λ , i.e. $\{x : |trcl(x)| < \lambda\}$

Master condition

Let $M \prec H_{\lambda}$. A condition $q \in \mathbb{P}$ is (M, \mathbb{P}) -generic if for every dense open $D \subseteq \mathbb{P}$ with $D \in M$, the set $D \cap M$ is predense below q, i.e. $(\forall q' \leq q)(\exists r \in D \cap M)(\exists s \in \mathbb{P})(s \leq q', r)$

Theorem (Shelah)

A forcing notion \mathbb{P} is proper if and only if for every large enough regular cardinals λ , and for club many **countable** $M \prec H_{\lambda}$, for every condition $p \in M$, there is $q \leq p$ which is an (M, \mathbb{P}) -generic condition.

Let λ be a regular cardinal. H_{λ} is the collection of all sets hereditarily of cardinality less than λ , i.e. $\{x : |trcl(x)| < \lambda\}$

Master condition

Let $M \prec H_{\lambda}$. A condition $q \in \mathbb{P}$ is (M, \mathbb{P}) -generic if for every dense open $D \subseteq \mathbb{P}$ with $D \in M$, the set $D \cap M$ is predense below q, i.e. $(\forall q' \leq q)(\exists r \in D \cap M)(\exists s \in \mathbb{P})(s \leq q', r)$

Theorem (Shelah)

A forcing notion \mathbb{P} is proper if and only if for every large enough regular cardinals λ , and for club many **countable** $M \prec H_{\lambda}$, for every condition $p \in M$, there is $q \leq p$ which is an (M, \mathbb{P}) -generic condition.

strong properness

using strongly (M, \mathbb{P}) -generic conditions,

Let λ be a regular cardinal. H_{λ} is the collection of all sets hereditarily of cardinality less than λ , i.e. $\{x : |trcl(x)| < \lambda\}$

Master condition

Let $M \prec H_{\lambda}$. A condition $q \in \mathbb{P}$ is (M, \mathbb{P}) -generic if for every dense open $D \subseteq \mathbb{P}$ with $D \in M$, the set $D \cap M$ is predense below q, i.e. $(\forall q' \leq q)(\exists r \in D \cap M)(\exists s \in \mathbb{P})(s \leq q', r)$

Theorem (Shelah)

A forcing notion \mathbb{P} is proper if and only if for every large enough regular cardinals λ , and for club many **countable** $M \prec H_{\lambda}$, for every condition $p \in M$, there is $q \leq p$ which is an (M, \mathbb{P}) -generic condition.

strong properness

using strongly (M, \mathbb{P}) -generic conditions, $D \subseteq \mathbb{P} \cap M$ must be predense below q.

preserving \aleph_1

If $\mathbb P$ is strongly proper, then $\mathbb P$ is proper, in particular forcing with $\mathbb P$ does not collapse \aleph_1 .

preserving \aleph_1

If \mathbb{P} is strongly proper, then \mathbb{P} is proper, in particular forcing with \mathbb{P} does not collapse \aleph_1 .

Tower

Let $\alpha < \omega_1$. The sequence $\mathcal{N} = \langle N_{\xi} : \xi \leq \alpha \rangle$ is said to be an α -tower if for some regular cardinal λ ,

- 1. $N_{\xi} \prec H_{\lambda}$, countable;
- 2. $N_{\xi} \in N_{\xi+1}$ for $\xi < \alpha$;
- 3. $N_{\delta} = \bigcup_{\xi < \delta} N_{\xi}$ for limit ordinals $\delta \leq \alpha$;
- 4. $\langle N_{\zeta} : \zeta \leq \xi \rangle \in N_{\xi+1}$ for every $\xi < \alpha$.

preserving \aleph_1

If \mathbb{P} is strongly proper, then \mathbb{P} is proper, in particular forcing with \mathbb{P} does not collapse \aleph_1 .

Tower

Let $\alpha < \omega_1$. The sequence $\mathcal{N} = \langle N_{\xi} : \xi \leq \alpha \rangle$ is said to be an α -tower if for some regular cardinal λ ,

- 1. $N_{\xi} \prec H_{\lambda}$, countable;
- 2. $N_{\xi} \in N_{\xi+1}$ for $\xi < \alpha$;
- 3. $N_{\delta} = \bigcup_{\xi < \delta} N_{\xi}$ for limit ordinals $\delta \leq \alpha$;
- 4. $\langle N_{\zeta} : \zeta \leq \xi \rangle \in N_{\xi+1}$ for every $\xi < \alpha$.

α -properness

 \mathbb{P} is called α -proper if for every α -tower with $\mathbb{P} \in N_0$, every condition $p \in \mathbb{P} \cap N_0$ has an extension q which is a master condition for each $N_{\mathcal{E}} \in \mathcal{N}$.

Notation: S

The collection of all countable $M \prec H_{\omega_1}$.

The collection of all countable $M \prec H_{\omega_1}$.

Notation: δ_M

The ordinal $M \cap \omega_1$, for $M \in \mathcal{S}$.

The collection of all countable $M \prec H_{\omega_1}$.

Notation: δ_M

The ordinal $M \cap \omega_1$, for $M \in \mathcal{S}$.

Let \mathbb{P} consist of pairs $p = \langle \mathcal{M}_p, f_p \rangle$, where

1. $\mathcal{M}_p = \langle M_i^p : i < n_p \rangle$ is a finite \in -increasing sequence of elements of \mathcal{S} , and

The collection of all countable $M \prec H_{\omega_1}$.

Notation: δ_M

The ordinal $M \cap \omega_1$, for $M \in \mathcal{S}$.

Let \mathbb{P} consist of pairs $p = \langle \mathcal{M}_p, f_p \rangle$, where

- 1. $\mathcal{M}_p = \langle M_i^p : i < n_p \rangle$ is a finite \in -increasing sequence of elements of \mathcal{S} , and
- 2. the function $f_p: \mathcal{M}_p \longrightarrow H_{\omega_1}$ is defined such that $f_p(M_i^p)$ is a finite subset of M_{i+1}^p if $i < n_p 1$, and $f_p(M_{n_p-1}^p)$ is a finite subset of H_{ω_1} .

The collection of all countable $M \prec H_{\omega_1}$.

Notation: δ_M

The ordinal $M \cap \omega_1$, for $M \in \mathcal{S}$.

Let \mathbb{P} consist of pairs $p = \langle \mathcal{M}_p, f_p \rangle$, where

- 1. $\mathcal{M}_p = \langle M_i^p : i < n_p \rangle$ is a finite \in -increasing sequence of elements of \mathcal{S} , and
- 2. the function $f_p : \mathcal{M}_p \longrightarrow H_{\omega_1}$ is defined such that $f_p(M_i^p)$ is a finite subset of M_{i+1}^p if $i < n_p 1$, and $f_p(M_{n_p-1}^p)$ is a finite subset of H_{ω_1} .

 $q \leq p$ if and only if $\mathcal{M}_p \subseteq \mathcal{M}_q$ and $f_p(M) \subseteq f_q(M)$ for every $M \in \mathcal{M}_p$.

For every $p \in \mathbb{P}$ and $\gamma \in \omega_1$, there is $p' \leq p$ such that $\gamma < \delta_N$ for some $N \in \mathcal{M}_{p'}$.

For every $p \in \mathbb{P}$ and $\gamma \in \omega_1$, there is $p' \leq p$ such that $\gamma < \delta_N$ for some $N \in \mathcal{M}_{p'}$.

Proof

There exists $N \prec H_{\omega_1}$ such that $p, \gamma \in N$. Let $p' = \langle \mathcal{M}_{p'}, f_{p'} \rangle$ be such that:

- $\mathcal{M}_{p'} = \mathcal{M}_p \cup \{N\}$
- $f_{p'}(M) = f_p(M)$ $M \in \mathcal{M}_p$
- $f_{p'}(N) = \emptyset$

For every $p \in \mathbb{P}$ and $\gamma \in \omega_1$, there is $p' \leq p$ such that $\gamma < \delta_N$ for some $N \in \mathcal{M}_{p'}$.

Proof

There exists $N \prec H_{\omega_1}$ such that $p, \gamma \in N$. Let $p' = \langle \mathcal{M}_{p'}, f_{p'} \rangle$ be such that:

- $\mathcal{M}_{p'} = \mathcal{M}_p \cup \{N\}$
- $f_{p'}(M) = f_p(M)$ $M \in \mathcal{M}_p$
- $f_{p'}(N) = \emptyset$

Lemma

If $G \subseteq \mathbb{P}$ is a generic filter, then

$$C = \{\delta_M \colon M \in \mathcal{M}_p \text{ for some } p \in G\}$$

is a club of ω_1 .

Given any $\gamma \in \omega_1$

C is unbounded in ω_1

claim: If p forces γ to be a limit point of \dot{C} , then p also forces it is an element of \dot{C} .

C is unbounded in ω_1

claim: If p forces γ to be a limit point of \dot{C} , then p also forces it is an element of \dot{C} .

Proof: Suppose not.

C is unbounded in ω_1

claim: If p forces γ to be a limit point of \dot{C} , then p also forces it is an element of \dot{C} .

Proof: Suppose not. There is no $M \in \mathcal{M}_p$ with $\delta_M = \gamma$

C is unbounded in ω_1

claim: If p forces γ to be a limit point of \dot{C} , then p also forces it is an element of \dot{C} .

Proof: Suppose not. There is no $M \in \mathcal{M}_p$ with $\delta_M = \gamma$ For some $i, \, \delta_{M_i^p} < \gamma < \delta_{M_{i+1}^p}$

C is unbounded in ω_1

claim: If p forces γ to be a limit point of \dot{C} , then p also forces it is an element of \dot{C} .

Proof: Suppose not. There is no $M \in \mathcal{M}_p$ with $\delta_M = \gamma$

For some i, $\delta_{M_i^p} < \gamma < \delta_{M_{i+1}^p}$

Let $\xi < \delta_{M^p_{i+1}}$ be any ordinal greater than γ

C is unbounded in ω_1

claim: If p forces γ to be a limit point of \dot{C} , then p also forces it is an element of \dot{C} .

Proof: Suppose not. There is no $M \in \mathcal{M}_p$ with $\delta_M = \gamma$

For some i, $\delta_{M_i^p} < \gamma < \delta_{M_{i+1}^p}$

Let $\xi < \delta_{M_{i+1}^p}$ be any ordinal greater than γ

$$q = \langle \mathcal{M}_q, f_q \rangle$$

- $\mathcal{M}_q = \mathcal{M}_p$
- $f_q(M) = f_p(M)$ for all $M \neq M_i^p$
- $f_q(M_i^p) = f_p(M_i^p) \cup \{\xi\}$

 $\mathbb P$ is not $\omega\text{-proper}.$

Proof.

Let $p \in \mathbb{P} \cap N_0 \in \mathcal{N}$ an ω -tower

 $\mathbb P$ is not $\omega\text{-proper}.$

Proof.

Let $p \in \mathbb{P} \cap N_0 \in \mathcal{N}$ an ω -tower Let $q \leq p$ is $(\mathcal{N}, \mathbb{P})$ -generic condition

 \mathbb{P} is not ω -proper.

Proof.

Let $p \in \mathbb{P} \cap N_0 \in \mathcal{N}$ an ω -tower Let $q \leq p$ is $(\mathcal{N}, \mathbb{P})$ -generic condition $q \Vdash \dot{C} \cap \delta_{N_i}$ is unbounded in δ_{N_i} , hence $q \Vdash \delta_{N_i} \in \dot{C}$. There are n, i and $q' \leq q$, such that $\delta_{N_i^{q'}} < \delta_{N_n} < \delta_{N_\omega} < \delta_{N_{i+1}^{q'}}$.

 \mathbb{P} is not ω -proper.

Proof.

Let $p \in \mathbb{P} \cap N_0 \in \mathcal{N}$ an ω -tower Let $q \leq p$ is $(\mathcal{N}, \mathbb{P})$ -generic condition $q \Vdash "\dot{C} \cap \delta_{N_i}$ is unbounded in δ_{N_i} ", hence $q \Vdash "\delta_{N_i} \in \dot{C}$ ". There are n, i and $q' \leq q$, such that $\delta_{N_i^{q'}} < \delta_{N_n} < \delta_{N_\omega} < \delta_{N_{i+1}^{q'}}$. Let $\xi < \delta_{N_{i+1}^{q'}}$ be such that $\delta_{N_\omega} < \xi$

 \mathbb{P} is not ω -proper.

Proof.

Let $p \in \mathbb{P} \cap N_0 \in \mathcal{N}$ an ω -tower Let $q \leq p$ is $(\mathcal{N}, \mathbb{P})$ -generic condition $q \Vdash "\dot{C} \cap \delta_{N_i}$ is unbounded in δ_{N_i} ", hence $q \Vdash "\delta_{N_i} \in \dot{C}$ ". There are n, i and $q' \leq q$, such that $\delta_{N_i^{q'}} < \delta_{N_n} < \delta_{N_\omega} < \delta_{N_{i+1}^{q'}}$. Let $\xi < \delta_{N_{i+1}^{q'}}$ be such that $\delta_{N_\omega} < \xi$ let q'' be such that

•
$$\mathcal{M}_{q''} = \mathcal{M}_{q'}$$

•
$$f_{q''}(M) = f_{q'}(M)$$
 for all $M \neq N_i^{q'}$

•
$$f_{q''}(N_i^{q'}) = f_{q'}(N_i^{q'}) \cup \{\xi\}$$

 \mathbb{P} is not ω -proper.

Proof.

Let $p \in \mathbb{P} \cap N_0 \in \mathcal{N}$ an ω -tower

Let $q \leq p$ is $(\mathcal{N}, \mathbb{P})$ -generic condition

$$q \Vdash \dot{C} \cap \delta_{N_i}$$
 is unbounded in δ_{N_i} , hence $q \vdash \dot{C} \cap \delta_{N_i} \in \dot{C}$.

There are n, i and $q' \leq q$, such that $\delta_{N_i^{q'}} < \delta_{N_n} < \delta_{N_\omega} < \delta_{N_{i+1}^{q'}}$.

Let
$$\xi < \delta_{N_{i+1}^{q'}}$$
 be such that $\delta_{N_{\omega}} < \xi$

let q'' be such that

- $\mathcal{M}_{a''} = \mathcal{M}_{a'}$
- $f_{q''}(M) = f_{q'}(M)$ for all $M \neq N_i^{q'}$
- $f_{q''}(N_i^{q'}) = f_{q'}(N_i^{q'}) \cup \{\xi\}$

$$q'' \leq q$$
 such that for all $r \leq q''(r \Vdash "\delta_{N_n} \notin \dot{C}")$.

Definition

Let $\alpha < \omega_1$ be an indecomposable ordinal.

 $p = \langle \mathcal{M}_p, f_p, \mathcal{W}_p \rangle \in \mathbb{P}[\alpha]$ such that:

- $\mathcal{M}_p = \langle M_{\xi}^p \colon \xi \leq \gamma_p \rangle$ is an \in -increasing sequence of elements of \mathcal{S} for some $\gamma_p < \alpha$ which is continuous at limits;
- the function $f_p: \mathcal{M}_p \longrightarrow H_{\omega_1}$ is defined such that $f_p(M_{\xi}^p)$ is a finite subset of $M_{\xi+1}^p$ for $\xi < \gamma$, and $f_p(M_{\gamma}^p)$ is a finite subset of H_{ω_1} ; and
- the witness W_p is a countable \in -chain of elements of S such that for every $N \in W_p$, $p \upharpoonright_N = \langle \mathcal{M}_p \cap N, f_p \upharpoonright_{\mathcal{M}_p \cap N}, \mathcal{W}_p \cap N \rangle \in N$.

 $q \leq p$ if and only if $\mathcal{M}_p \subseteq \mathcal{M}_q$, $f_p(M) \subseteq f_q(M)$ for every $M \in \mathcal{M}_p$ and $\mathcal{W}_p \subseteq \mathcal{W}_q$.

If $G \subseteq \mathbb{P}[\alpha]$ is a generic filter, then $C = \{\delta_M : M \in \mathcal{M}_p \text{ for some } p \in G\}$ is a club.

Theorem

 $\mathbb{P}[\alpha] \text{ is } \beta\text{-proper for every } \beta < \alpha, \text{ but is not } \alpha\text{-proper}.$

Thank You