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CONSISTENCY AND INDEPENDENCE

It all started on that day in December 1873 when Georg Cantor
established that the continuum is not countable

|X| < |P(X)| ℵ0,ℵ1,ℵ2, . . .

c = 2ℵ0 = ℵ?

2ℵα = ℵα+1

Gödel 1939: Con(ZF ) implies Con(ZFC +GCH)

Cohen 1963: Con(ZF ) implies Con(ZF + ¬AC)
Con(ZFC) implies Con(ZFC + ¬CH)

V [G] |= ZFC + 2ℵ0 ≥ ℵ2
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Gödel 1939: Con(ZF ) implies Con(ZFC +GCH)

Cohen 1963: Con(ZF ) implies Con(ZF + ¬AC)
Con(ZFC) implies Con(ZFC + ¬CH)

V [G] |= ZFC + 2ℵ0 ≥ ℵ2

Rouholah Hoseini Naveh Adding Highly Generic Subsets of ω2



FORCING

Forcing Notion

P = ⟨P,≤P ⟩ ∈ V a poset of conditions with largest element

Add(ℵ0,ℵ2) = {p
...(ω × ω2) −→ 2 | |p| < ℵ0}

p1 ≤ p2 or p1 extends p2 or p1 is stronger than p2
or p1 has more information than p2 iff p2 ⊆ p1

Dense Open subsets

D ⊆ P is dense open if

∀p ∈ P∃d ∈ D(d ≤ p)

d1 ∈ D ∧ d2 ≤ d1 ⇒ d2 ∈ D

Generic Set

G is Generic if

G ⊆ P is a filter

G meets every dense open subset of P that lies in V
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PRESERVING CARDINALS AND THE GCH

Cohen showed that (2ℵ0)V [G] ≥ ℵV
2

Does ℵV
2 = ℵV [G]

2 ?

Chain condition

P is κ.c.c. if every maximal antichain A ⊆ P has size < κ
Cohen: If P is κ.c.c. then forcing with P preserves
cardinals ≥ κ.
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ℵ1-PRESERVING FORCINGS

Recall: Let X be a set and κ ≤ |X| a cardinal

[X]κ = {Y ⊆ X | |Y | = κ}

Proper Forcings

A forcing notion P is proper if for every infinite X and every
stationary set S ⊆ [X]≤ℵ0 , S remains stationary in V [G]

Shelah: If P is proper then forcing with P preserves
ℵ1
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ELEMENTARY SUBSTRUCTURES

Let θ be a regular uncountable cardinal

H(θ) = {x : |TC(x)| < θ}
= {x : x ⊆ y ∃y(y is transitive ∧ |y| < θ)}

⟨H(θ),∈⟩ |= ZFC − P

If θ is inaccessible cardinal then ⟨H(θ),∈⟩ |= ZFC

Elementary substructures

A ≺ B iff A ⊆ B and for all formulas φ[x1, . . . , xn] of L and all
a1, . . . , an ∈ A, we have

A |= φ[a1, . . . , an] ⇐⇒ B |= φ[a1, . . . , an]

Let B be a model of power α, let |L | ≤ β ≤ α, let X ⊆ B and
|X| ≤ β Then B has an elementary submodel of power β which
contains X
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FORCING WITH ELEMENTARY SUBSTRUCTURES

S = {M ∈ [H(θ)]ℵ0 : ⟨M,∈, <w⟩ ≺ ⟨H(θ),∈, <w⟩}

THE ∈-COLLAPSE FORCING

P∈(θ) is the set of all finite ∈-chains of countable elementary
submodels of ⟨H(θ),∈,≤w⟩ with the inverse inclusion as the
order

MATRIX ∈-COLLAPSE FORCING

PM
∈ = {p ⊂ S | |p| < ℵ0} such that

If M,N ∈ p and M ∩ ω1 = δM = δN = N ∩ ω1, then
⟨M,∈, <w⟩ ≃ ⟨N,∈, <w⟩
If M ∈ p and δ ∈ dom(p) such that δM < δ, then
∃N ∈ p(δ) (M ∈ N).
where p(α) = {M ∈ p : δM = α} and
dom(p) = {α : p(α) ̸= ∅}.
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GITIK’S QUESTION (2017)

Suppose GCH holds and κ is a regular cardinal. Is there a
cardinal and GCH preserving extension of the universe in
which there exists a set A ⊆ κ of size κ such that for all
countable set X ∈ P(κ) ∩ V , A ∩X and X\A are non-empty?

κ = ℵ0

Pω = {p : ω −→ 2 ||p| < ℵ0 }

κ = ℵ1

Pω1 = {p : ω1 −→ 2 ||p| < ℵ0 }
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DENSITY ARGUMENT

DX = {p ∈ P : ∃α, β ∈ X ∩ dom(p)
(
p(α) = 1 ∧ p(β) = 0

)
}.

If p ∈ G ∩DX and α, β ∈ X ∩ dom(p) be such that p(α) = 1
and p(β) = 0, then α ∈ X ∩A and β ∈ X \A

THE PROBLEM

Pω2 ≃ Add(ℵ0,ℵ2) Hence 2ℵ0 > ℵ1 and GCH fails
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THE FORCING NOTION

Definition

A condition p of P is a pair ⟨Mp, fp⟩, whenever:
(i) Mp ∈ PM

∈ ;

(ii) fp : ω2 −→ 2 is a finite partial function;

(iii) If M,N ∈ Mp with δM = δN , then

α ∈ (dom(fp) ∩M) ⇒ φM,N (α) ∈ dom(fp),
for each α as above, fp(φM,N (α)) = fp(α).

For p, q ∈ P, we say p ≤ q if and only if Mq ⊆ Mp and fq ⊆ fp.

Lemma

P is strongly proper and satisfies the ℵ2-c.c

Lemma

Forcing with P preserves the CH.
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Thank You
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