Adding Highly Generic Subsets of ω_2

Rouholah Hoseini Naveh

Joint work with: Dr Esfandiar Eslami Dr Mohammad Golshani

1401/12/3

CONSISTENCY AND INDEPENDENCE

It all started on that day in December 1873 when Georg Cantor established that *the continuum is not countable*

$$|X| < |\mathcal{P}(X)|$$
 $\aleph_0, \aleph_1, \aleph_2, \dots$

CONSISTENCY AND INDEPENDENCE

It all started on that day in December 1873 when Georg Cantor established that *the continuum is not countable*

$$|X| < |\mathcal{P}(X)|$$
 $\aleph_0, \aleph_1, \aleph_2, \dots$
$$c = 2^{\aleph_0} = \aleph_?$$

$$2^{\aleph_\alpha} = \aleph_{\alpha+1}$$

CONSISTENCY AND INDEPENDENCE

It all started on that day in December 1873 when Georg Cantor established that *the continuum is not countable*

$$|X| < |\mathcal{P}(X)|$$
 $\aleph_0, \aleph_1, \aleph_2, \dots$
$$c = 2^{\aleph_0} = \aleph_?$$

$$2^{\aleph_\alpha} = \aleph_{\alpha+1}$$

Gödel 1939: Con(ZF) implies Con(ZFC + GCH)

Cohen 1963: Con(ZF) implies $Con(ZF + \neg AC)$ Con(ZFC) implies $Con(ZFC + \neg CH)$

$$V[G] \models ZFC + 2^{\aleph_0} \ge \aleph_2$$

FORCING

Forcing Notion

 $\mathbb{P} = \langle P, \leq_P \rangle \in V$ a poset of **conditions** with largest element

$$Add(\aleph_0,\aleph_2) = \{p : (\omega \times \omega_2) \longrightarrow 2 \mid |p| < \aleph_0\}$$

 $p_1 \leq p_2$ or p_1 extends p_2 or p_1 is stronger than p_2 or p_1 has more information than p_2 iff $p_2 \subseteq p_1$

Dense Open subsets

 $D \subseteq \mathbb{P}$ is dense open if

- $\forall p \in \mathbb{P} \exists d \in D(d \leq p)$
- $d_1 \in D \land d_2 \le d_1 \Rightarrow d_2 \in D$

Generic Set

G is Generic if

- $G \subseteq \mathbb{P}$ is a filter
- G meets every dense open subset of \mathbb{P} that lies in V

PRESERVING CARDINALS AND THE GCH

Cohen showed that $(2^{\aleph_0})^{V[G]} \ge \aleph_2^V$ Does $\aleph_2^V = \aleph_2^{V[G]}$?

PRESERVING CARDINALS AND THE GCH

Cohen showed that $(2^{\aleph_0})^{V[G]} \ge \aleph_2^V$ Does $\aleph_2^V = \aleph_2^{V[G]}$?

Chain condition

 \mathbb{P} is $\kappa.c.c.$ if every maximal antichain $A \subseteq \mathbb{P}$ has size $< \kappa$ Cohen: If \mathbb{P} is $\kappa.c.c.$ then forcing with \mathbb{P} preserves cardinals $> \kappa$.

ℵ₁-PRESERVING FORCINGS

Recall: Let X be a set and $\kappa \leq |X|$ a cardinal

$$[X]^{\kappa} = \{Y \subseteq X \mid |Y| = \kappa\}$$

Proper Forcings

A forcing notion \mathbb{P} is proper if for every infinite X and every stationary set $S \subseteq [X]^{\leq \aleph_0}$, S remains stationary in V[G]

 \bullet Shelah: If $\mathbb P$ is proper then forcing with $\mathbb P$ preserves \aleph_1

ELEMENTARY SUBSTRUCTURES

Let θ be a regular uncountable cardinal

- $H(\theta) = \{x : |TC(x)| < \theta\}$ = $\{x : x \subseteq y \exists y(y \text{ is transitive } \land |y| < \theta)\}$
- $\langle H(\theta), \in \rangle \models ZFC P$
- If θ is inaccessible cardinal then $\langle H(\theta), \in \rangle \models ZFC$

Elementary substructures

 $\mathfrak{A} \prec \mathfrak{B}$ iff $\mathfrak{A} \subseteq \mathfrak{B}$ and for all formulas $\varphi[x_1,\ldots,x_n]$ of \mathscr{L} and all $a_1,\ldots,a_n \in A$, we have

$$\mathfrak{A} \models \varphi[a_1,\ldots,a_n] \iff \mathfrak{B} \models \varphi[a_1,\ldots,a_n]$$

Let \mathfrak{B} be a model of power α , let $|\mathcal{L}| \leq \beta \leq \alpha$, let $X \subseteq B$ and $|X| \leq \beta$ Then \mathfrak{B} has an elementary submodel of power β which contains X

FORCING WITH ELEMENTARY SUBSTRUCTURES

$$\mathcal{S} = \{ M \in [H(\theta)]^{\aleph_0} : \langle M, \in, <_w \rangle \prec \langle H(\theta), \in, <_w \rangle \}$$

THE ∈-COLLAPSE FORCING

 $\mathbb{P}_{\in}(\theta)$ is the set of all finite \in -chains of countable elementary submodels of $\langle H(\theta), \in, \leq_w \rangle$ with the inverse inclusion as the order

MATRIX ∈-COLLAPSE FORCING

 $\mathbb{P}_{\in}^{\mathcal{M}} = \{ p \subset \mathcal{S} \mid |p| < \aleph_0 \} \text{ such that }$

- If $M, N \in p$ and $M \cap \omega_1 = \delta_M = \delta_N = N \cap \omega_1$, then $\langle M, \in, <_w \rangle \simeq \langle N, \in, <_w \rangle$
- If $M \in p$ and $\delta \in dom(p)$ such that $\delta_M < \delta$, then $\exists N \in p(\delta) \ (M \in N)$. where $p(\alpha) = \{M \in p : \delta_M = \alpha\}$ and $dom(p) = \{\alpha : p(\alpha) \neq \emptyset\}$.

GITIK'S QUESTION (2017)

Suppose GCH holds and κ is a regular cardinal. Is there a cardinal and GCH preserving extension of the universe in which there exists a set $A \subseteq \kappa$ of size κ such that for all countable set $X \in \mathscr{P}(\kappa) \cap V$, $A \cap X$ and $X \setminus A$ are non-empty?

GITIK'S QUESTION (2017)

Suppose GCH holds and κ is a regular cardinal. Is there a cardinal and GCH preserving extension of the universe in which there exists a set $A \subseteq \kappa$ of size κ such that for all countable set $X \in \mathscr{P}(\kappa) \cap V$, $A \cap X$ and $X \setminus A$ are non-empty?

$$\kappa = \aleph_0$$

$$\mathbb{P}_{\omega} = \{ p : \omega \longrightarrow 2 \mid |p| < \aleph_0 \}$$

$$\kappa = \aleph_1$$

$$\mathbb{P}_{\omega_1} = \{ p : \omega_1 \longrightarrow 2 \mid |p| < \aleph_0 \}$$

DENSITY ARGUMENT

$$D_X = \{ p \in \mathbb{P} : \exists \alpha, \beta \in X \cap dom(p) (p(\alpha) = 1 \land p(\beta) = 0) \}.$$

If $p \in G \cap D_X$ and $\alpha, \beta \in X \cap dom(p)$ be such that $p(\alpha) = 1$ and $p(\beta) = 0$, then $\alpha \in X \cap A$ and $\beta \in X \setminus A$

DENSITY ARGUMENT

$$D_X = \{ p \in \mathbb{P} : \exists \alpha, \beta \in X \cap dom(p) (p(\alpha) = 1 \land p(\beta) = 0) \}.$$

If $p \in G \cap D_X$ and $\alpha, \beta \in X \cap dom(p)$ be such that $p(\alpha) = 1$ and $p(\beta) = 0$, then $\alpha \in X \cap A$ and $\beta \in X \setminus A$

THE PROBLEM

 $\mathbb{P}_{\omega_2} \simeq Add(\aleph_0, \aleph_2)$ Hence $2^{\aleph_0} > \aleph_1$ and GCH fails

THE FORCING NOTION

Definition

A condition p of \mathbb{P} is a pair $\langle \mathcal{M}_p, f_p \rangle$, whenever:

- (i) $\mathcal{M}_p \in \mathbb{P}_{\in}^M$;
- (ii) $f_p: \omega_2 \longrightarrow 2$ is a finite partial function;
- (iii) If $M, N \in \mathcal{M}_p$ with $\delta_M = \delta_N$, then
 - $\alpha \in (dom(f_p) \cap M) \Rightarrow \varphi_{M,N}(\alpha) \in dom(f_p),$
 - for each α as above, $f_p(\varphi_{M,N}(\alpha)) = f_p(\alpha)$.

For $p, q \in \mathbb{P}$, we say $p \leq q$ if and only if $\mathcal{M}_q \subseteq \mathcal{M}_p$ and $f_q \subseteq f_p$.

Lemma

 \mathbb{P} is strongly proper and satisfies the \aleph_2 -c.c

Lemma

Forcing with \mathbb{P} preserves the CH.

Thank You