
Forcing With Elementary Substructures
(Side condition forcing)

Rouholah Hoseini Nave

August 21, 2025

Supervisors:
Dr Esfandiar Eslami

Dr Mohamad Golshani

1401/2/18

Rouholah Hoseini Nave Forcing With Elementary Substructures



CH 1/14
consistency and independence

It all started on that day in December 1873 when Georg Cantor
established that the continuum is not countable

|X| < |P(X)| ℵ0,ℵ1,ℵ2, . . .

c = 2ℵ0 = ℵ?

2ℵα = ℵα+1

Gödel 1939: Con(ZF) implies Con(ZFC + GCH)

Cohen 1963: Con(ZF) implies Con(ZF + ¬AC)
Con(ZFC) implies Con(ZFC + ¬CH)

V[G] |= ZFC + 2ℵ0 ≥ ℵ2
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FORCING 2/14
Objects

Forcing Notion
P = ⟨P,≤P⟩ ∈ V a poset of conditions with largest element

Add(ℵ0,ℵ2) = {p
...(ω × ω2) −→ 2 | |p| < ℵ0}

p1 ≤ p2 or p1 extends p2 or p1 is stronger than p2
or p1 has more information than p2 iff p2 ⊆ p1

Dense Open subsets
D ⊆ P is dense open if

∀p ∈ P∃d ∈ D(d ≤ p)
d1 ∈ D ∧ d2 ≤ d1 ⇒ d2 ∈ D

Generic Set
G is Generic if

G ⊆ P is a filter
G meets every dense open subset of P that lies in V
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FORCING 3/14
Generic Extension

VP the class of P-names
τ ∈ VP ⇐⇒ τ is a relation and ∀⟨σ, p⟩ ∈ τ(σ ∈ VP ∧ p ∈ P)

VP ⊂ V
G /∈ V

V[G] the generic extension
τ [G] = {σ[G] : ⟨σ, p⟩ ∈ τ ∃p ∈ G}
V[G] = {τ [G] : τ ∈ VP}

V[G] is the minimal model that includes V ∪ {G} and
V ∩ Ord = V[G] ∩ Ord
∀φ(V[G] |= φ ⇐⇒ ∃p ∈ G(p ⊩ φ))
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SOME DIFFICULTIES 4/14
preserving cardinals and GCH

Cohen showed that (2ℵ0)V[G] ≥ ℵV
2

Does ℵV
2 = ℵV[G]

2 ?

Chain condition
P is κ.c.c. if every maximal antichain A ⊆ P has size < κ
Cohen: If P is κ.c.c. then forcing with P preserves
cardinals ≥ κ.

κ-closed
P is κ-closed if for every λ < κ, every descending sequence
⟨pα : α < λ⟩ of conditions of P has a lower bound.
Solovay: If P is κ-closed then forcing with P preserves
cardinals ≤ κ
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ℵ1-PRESERVING FORCINGS 5/14

Axiom A Forcings
A class of ℵ1 preserving forcing notions that contains ℵ1.c.c.
and ℵ1-closed forcing notions introduced by Baumgartner

Recall: Let X be a set and κ ≤ |X| a cardinal

[X]κ = {Y ⊆ X | |Y| = κ}

Proper Forcings
A forcing notion P is proper if for every infinite X and every
stationary set S ⊆ [X]≤ℵ0 , S remains stationary in V[G]

Shelah: If P is proper then forcing with P preserves
ℵ1

Axiom A forcings are proper
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SOME REMINDERS 6/14
Elementary Submodels

Let θ be a regular uncountable cardinal
H(θ) = {x : |TC(x)| < θ}

= {x : x ⊆ y ∃y(y is transitive ∧ |y| < θ)}
⟨H(θ),∈⟩ |= ZFC − P
If θ is inaccessible cardinal then ⟨H(θ),∈⟩ |= ZFC

Elementary substructures
A ≺ B iff A ⊆ B and for all formulas φ[x1, . . . , xn] of L and all
a1, . . . , an ∈ A, we have

A |= φ[a1, . . . , an] ⇐⇒ B |= φ[a1, . . . , an]

Let B be a model of power α, let |L | ≤ β ≤ α, let X ⊆ B and
|X| ≤ β Then B has an elementary submodel of power β which
contains X
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PROPERNESS 7/14
A Characterisation

Let θ be a large enough regular cardinal, P a forcing notion and
⟨N,∈,≤w⟩ ≺ ⟨H(θ),∈,≤w⟩ countable with P ∈ N

Generic Conditions
q ∈ P is an (N,P)-generic condition if for every dense open set
D ⊆ P, D ∈ N implies D ∩ N is predense below q. i.e.

q′ ≤ q −→ ∃d ∈ D ∩ N ∃p ∈ P(p ≤ q′, d)

P is proper iff for all such N, every p ∈ P ∩ N has an
(N,P)-generic extension

q ∈ P is (N,P)-strongly generic condition if every dense open set
D ⊆ P ∩ N is predense below q
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THE ∈-COLLAPSE FORCING 8/14
Todorcevic 1984

P∈(θ) is the set of all finite ∈-chains of countable elementary
submodels of ⟨H(θ),∈,≤w⟩ with the inverse inclusion as the
order

Let κ > θ be a large enough regular cardinal and
⟨M′,∈, <w⟩ ≺ ⟨H(κ),∈, <w⟩ with θ ∈ M′ and M = M′ ∩ H(θ)

If M ∈ q, then q ∩ M′ ∈ P∈(θ) ∩ M′

If p ∈ P∈(θ) ∩ M′, then p ∪ {M} ∈ P∈(θ).

PFA
For every proper forcing P and for every family {Dα : α ∈ ω1}
of dense sets of P, there is a filter G ⊆ P such that G ∩ Dα ̸= ∅
for all α ∈ ω1

Applications
PFA implies OGA,PID,BA(ω1)
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THE ∈-COLLAPSE FORCING 9/14
As Side Condition

P = {p : α −→ ω1 | α ⊂ ω1is finite} with inverse inclusion
P is not ℵ1.c.c.
It collapses ℵ1

we can not prove its properness

Let M ∩ ω1 = δ, α ∈ M\dom(p) and q(a) > δ, then the natural
restriction of q to M as a function is not in M

Side conditions
P′ = {(p,N ) : p ∈ P ∧N ∈ P∈(θ)} such that

∀N ∈ N ∀α ∈ dom(p) ∩ N (p(α) ∈ N)
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MORE DIFICULTIES 10/14

Gitik’s question (2017)
Suppose GCH holds and κ is a regular cardinal. Is there a
cardinal and GCH preserving extension of the universe in which
there exists a set A ⊆ κ of size κ such that for all countable set
X ∈ P(κ) ∩ V, A ∩ X and X\A are non-empty?

κ = ℵ0

Pω = {p : ω −→ 2 ||p| < ℵ0 }

κ = ℵ1

Pω1 = {p : ω1 −→ 2 ||p| < ℵ0 }

Pω2 ≃ Add(ℵ0,ℵ2) Hence 2ℵ0 > ℵ1 and GCH fails
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MATRIX ∈-COLLAPSE FORCING 11/14
Todorcevic 2017

S = {M ∈ [H(θ)]ℵ0 : ⟨M,∈, <w⟩ ≺ ⟨H(θ),∈, <w⟩}

PM
∈ = {p ⊂ S | |p| < ℵ0} such that

If M,N ∈ p and M ∩ ω1 = δM = δN = N ∩ ω1, then
⟨M,∈, <w⟩ ≃ ⟨N,∈, <w⟩
If M ∈ p and δ ∈ dom(p) such that δM < δ, then
∃N ∈ p(δ) (M ∈ N).
where p(α) = {M ∈ p : δM = α} and
dom(p) = {α : p(α) ̸= ∅}.

Aplication
PM
∈ is strongly proper and forces the Continuum

Hypothesis
In V[G] there is a Kurepa tree with exactly ω2 branches
that does not contain Aronszajn subtrees
(We solved) the Gitik’s question for κ = ℵ2
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SEQUENCES OF MODELS OF TWO TYPES 12/14
Neeman 2017

κ < λ < θ

T is a collection of transitive ⟨W,∈, <w⟩ ≺ ⟨H(θ),∈, <w⟩,
and S is a collection of ⟨M,∈, <w⟩ ≺ ⟨H(θ),∈, <w⟩ with
κ ⊂ M and |M| < λ. All elements of S ∪ T belong to H(θ)
and contain {κ, λ}
If M1,M2 ∈ S and M1 ∈ M2 then M1 ⊂ M2
If M ∈ S and W ∈ M ∩ T then (M ∩ W) ∈ W ∩ S
Each W ∈ T is closed under sequences of lenght ≤ κ in
H(θ)

PS,T
κ,λ = {⟨Mξ : ξ < γ⟩ ∈ H(θ) |γ < κ} such that

∀ξ, Mξ ∈ S ∪ T
∀ζ < γ, {ξ < ζ : Mξ ∈ Mζ} is cofinal in ζ

∀ζ < γ, ⟨Mξ : ξ < ζ ∧ Mξ ∈ Mζ⟩ ∈ Mζ

The sequence is closed under intersections
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TWO APPLICATIONS 13/14
S = {M ∈ [H(θ)]ℵ0 : ⟨M,∈, <w⟩ ≺ ⟨H(θ),∈, <w⟩}
T = {H(λ) : ⟨H(λ),∈, <w⟩ ≺ ⟨H(θ),∈, <w⟩ ∧ cf(λ) > ω}

1
PS,T
∈ preserves ℵ1

If λ be a cardinal such that ω1 < λ < θ, collapsed to ω1
If T is stationary set on [H(θ)]<θ then PS,T

∈ ⊩ θ = ω2

2
Let θ a Supercompact cardinal and J : θ −→ H(θ) Laver
function
PS,T
∈ (J) is an iterated forcing, constructed using PS,T

∈
preserves ℵ1
forces that θ = ℵ2
Get new proof for the consistency of PFA
V[G] is a model of PFA in which PFA+ fails
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THE QUESTIONS 14/14

The Problem
The forcing of Neeman preserves cardinals but does not
preserve GCH

The Idea
Replacing the linear parts of small nodes with matrices of the
same type of models

Let
S = {M ∈ [H(ω2)]

ℵ0 : ⟨M,∈, <w⟩ ≺ ⟨H(ω2),∈, <w⟩}

T = {X ∈ [H(ω2)]
ℵ1 : ⟨X,∈, <w⟩ ≺ ⟨H(ω2),∈, <w⟩ ∧ ωX ⊂ X}

Is there a cardinal and GCH preserving forcing notion
PS,T
∈,M?

Can we iterete such a forcing preserving GCH?
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