Forcing With Elementary Substructures

(Side condition forcing)

Rouholah Hoseini Nave

August 21, 2025

Supervisors: Dr Esfandiar Eslami Dr Mohamad Golshani

1401/2/18

consistency and independence

It all started on that day in December 1873 when Georg Cantor established that *the continuum is not countable*

$$|X| < |\mathcal{P}(X)|$$
 $\aleph_0, \aleph_1, \aleph_2, \dots$

consistency and independence

It all started on that day in December 1873 when Georg Cantor established that *the continuum is not countable*

$$|X| < |\mathcal{P}(X)|$$
 $\aleph_0, \aleph_1, \aleph_2, \dots$
$$c = 2^{\aleph_0} = \aleph_?$$

$$2^{\aleph_\alpha} = \aleph_{\alpha+1}$$

consistency and independence

It all started on that day in December 1873 when Georg Cantor established that *the continuum is not countable*

$$|X| < |\mathcal{P}(X)|$$
 $\aleph_0, \aleph_1, \aleph_2, \dots$

$$c = 2^{\aleph_0} = \aleph_?$$
$$2^{\aleph_\alpha} = \aleph_{\alpha+1}$$

Gödel 1939: Con(ZF) implies Con(ZFC + GCH)

Cohen 1963: Con(ZF) implies $Con(ZF + \neg AC)$ Con(ZFC) implies $Con(ZFC + \neg CH)$

$$V[G] \models ZFC + 2^{\aleph_0} \ge \aleph_2$$

Objects

Forcing Notion

 $\mathbb{P} = \langle P, \leq_P \rangle \in V$ a poset of **conditions** with largest element

$$Add(\aleph_0, \aleph_2) = \{ p : (\omega \times \omega_2) \longrightarrow 2 \mid |p| < \aleph_0 \}$$

 $p_1 \le p_2$ or p_1 extends p_2 or p_1 is stronger than p_2 or p_1 has more information than p_2 iff $p_2 \subseteq p_1$

Dense Open subsets

 $D \subseteq \mathbb{P}$ is dense open if

- $\bullet \ \forall p \in \mathbb{P} \exists d \in D (d \le p)$
- $d_1 \in D \land d_2 \le d_1 \Rightarrow d_2 \in D$

Generic Set

G is Generic if

- $G \subseteq \mathbb{P}$ is a filter
- G meets every dense open subset of \mathbb{P} that lies in V

FORCING

Generic Extension

$V^{\mathbb{P}}$ the class of \mathbb{P} -names

 $\tau \in V^{\mathbb{P}} \iff \tau \text{ is a relation and } \forall \langle \sigma, p \rangle \in \tau(\sigma \in V^{\mathbb{P}} \land p \in \mathbb{P})$

- \bullet $V^{\mathbb{P}} \subset V$
- \bullet $G \notin V$

V[G] the generic extension

$$\begin{split} \tau[G] &= \{\sigma[G]: \ \langle \sigma, p \rangle \in \tau \ \exists p \in G \} \\ V[G] &= \{\tau[G]: \ \tau \in \mathit{V}^{\mathbb{P}} \} \end{split}$$

$V^{\mathbb{P}}$ the class of \mathbb{P} -names

 $\tau \in V^{\mathbb{P}} \iff \tau \text{ is a relation and } \forall \langle \sigma, p \rangle \in \tau (\sigma \in V^{\mathbb{P}} \land p \in \mathbb{P})$

- \bullet $V^{\mathbb{P}} \subset V$
- \bullet $G \notin V$

V[G] the generic extension

$$\tau[G] = \{\sigma[G] : \langle \sigma, p \rangle \in \tau \ \exists p \in G\}$$

$$V[G] = \{\tau[G] : \tau \in V^{\mathbb{P}}\}$$

- V[G] is the minimal **model** that includes $V \cup \{G\}$ and $V \cap Ord = V[G] \cap Ord$
- $\forall \varphi(V[G] \models \varphi \iff \exists p \in G(p \Vdash \varphi))$

SOME DIFFICULTIES

preserving cardinals and GCH

Cohen showed that
$$(2^{\aleph_0})^{V[G]} \ge \aleph_2^V$$

Does $\aleph_2^V = \aleph_2^{V[G]}$?

preserving cardinals and GCH

Cohen showed that
$$(2^{\aleph_0})^{V[G]} \ge \aleph_2^V$$

Does $\aleph_2^V = \aleph_2^{V[G]}$?

Chain condition

 \mathbb{P} is $\kappa.c.c.$ if every maximal antichain $A \subseteq \mathbb{P}$ has size $< \kappa$ Cohen: If \mathbb{P} is $\kappa.c.c.$ then forcing with \mathbb{P} preserves cardinals $> \kappa$.

preserving cardinals and GCH

Cohen showed that
$$(2^{\aleph_0})^{V[G]} \ge \aleph_2^V$$

Does $\aleph_2^V = \aleph_2^{V[G]}$?

Chain condition

 \mathbb{P} is $\kappa.c.c.$ if every maximal antichain $A \subseteq \mathbb{P}$ has size $< \kappa$ Cohen: If \mathbb{P} is $\kappa.c.c.$ then forcing with \mathbb{P} preserves cardinals $> \kappa$.

κ -closed

 \mathbb{P} is κ -closed if for every $\lambda < \kappa$, every descending sequence $\langle p_{\alpha} : \alpha < \lambda \rangle$ of conditions of \mathbb{P} has a lower bound. Solovay: If \mathbb{P} is κ -closed then forcing with \mathbb{P} preserves

cardinals $< \kappa$

Axiom A Forcings

A class of \aleph_1 preserving forcing notions that contains $\aleph_1.c.c.$ and \aleph_1 -closed forcing notions introduced by Baumgartner

Recall: Let X be a set and $\kappa \leq |X|$ a cardinal

$$[X]^{\kappa} = \{ Y \subseteq X \mid |Y| = \kappa \}$$

Proper Forcings

A forcing notion \mathbb{P} is proper if for every infinite X and every stationary set $S \subseteq [X]^{\leq \aleph_0}$, S remains stationary in V[G]

- \bullet Shelah: If $\mathbb P$ is proper then forcing with $\mathbb P$ preserves \aleph_1
- Axiom A forcings are proper

Elementary Submodels

Let θ be a regular uncountable cardinal

- $H(\theta) = \{x : |TC(x)| < \theta\}$ = $\{x : x \subseteq y \exists y (y \text{ is transitive } \land |y| < \theta)\}$
- $\langle H(\theta), \in \rangle \models ZFC P$
- If θ is inaccessible cardinal then $\langle H(\theta), \in \rangle \models ZFC$

Elementary substructures

 $\mathfrak{A} \prec \mathfrak{B}$ iff $\mathfrak{A} \subseteq \mathfrak{B}$ and for all formulas $\varphi[x_1, \ldots, x_n]$ of \mathscr{L} and all $a_1, \ldots, a_n \in A$, we have

$$\mathfrak{A} \models \varphi[a_1,\ldots,a_n] \iff \mathfrak{B} \models \varphi[a_1,\ldots,a_n]$$

Let \mathfrak{B} be a model of power α , let $|\mathcal{L}| \leq \beta \leq \alpha$, let $X \subseteq B$ and $|X| \leq \beta$ Then \mathfrak{B} has an elementary submodel of power β which contains X

A Characterisation

Let θ be a large enough regular cardinal, \mathbb{P} a forcing notion and $\langle N, \in, \leq_w \rangle \prec \langle H(\theta), \in, \leq_w \rangle$ countable with $\mathbb{P} \in N$

Generic Conditions

 $q \in \mathbb{P}$ is an (N, \mathbb{P}) -generic condition if for every dense open set $D \subseteq \mathbb{P}, \ D \in N$ implies $D \cap N$ is predense below q. i.e.

$$q' \le q \longrightarrow \exists d \in D \cap N \exists p \in \mathbb{P}(p \le q', d)$$

 \mathbb{P} is proper iff for all such N, every $p \in \mathbb{P} \cap N$ has an (N, \mathbb{P}) -generic extension

 $q\in\mathbb{P}$ is (N,\mathbb{P}) -strongly generic condition if every dense open set $D\subset\mathbb{P}\cap N$ is predense below q

Todorcevic 1984

 $\mathbb{P}_{\in}(\theta)$ is the set of all finite \in -chains of countable elementary submodels of $\langle H(\theta), \in, \leq_w \rangle$ with the inverse inclusion as the order

Todorcevic 1984

 $\mathbb{P}_{\in}(\theta)$ is the set of all finite \in -chains of countable elementary submodels of $\langle H(\theta), \in, \leq_w \rangle$ with the inverse inclusion as the order

Let $\kappa > \theta$ be a large enough regular cardinal and $\langle M', \in, <_w \rangle \prec \langle H(\kappa), \in, <_w \rangle$ with $\theta \in M'$ and $M = M' \cap H(\theta)$

- If $M \in q$, then $q \cap M' \in \mathbb{P}_{\in}(\theta) \cap M'$
- If $p \in \mathbb{P}_{\in}(\theta) \cap M'$, then $p \cup \{M\} \in \mathbb{P}_{\in}(\theta)$.

Todorcevic 1984

 $\mathbb{P}_{\in}(\theta)$ is the set of all finite \in -chains of countable elementary submodels of $\langle H(\theta), \in, \leq_w \rangle$ with the inverse inclusion as the order

Let $\kappa > \theta$ be a large enough regular cardinal and $\langle M', \in, <_w \rangle \prec \langle H(\kappa), \in, <_w \rangle$ with $\theta \in M'$ and $M = M' \cap H(\theta)$

- If $M \in q$, then $q \cap M' \in \mathbb{P}_{\in}(\theta) \cap M'$
- If $p \in \mathbb{P}_{\in}(\theta) \cap M'$, then $p \cup \{M\} \in \mathbb{P}_{\in}(\theta)$.

PFA

For every proper forcing \mathbb{P} and for every family $\{D_{\alpha} : \alpha \in \omega_1\}$ of dense sets of \mathbb{P} , there is a filter $G \subseteq \mathbb{P}$ such that $G \cap D_{\alpha} \neq \emptyset$ for all $\alpha \in \omega_1$

Todorcevic 1984

 $\mathbb{P}_{\in}(\theta)$ is the set of all finite \in -chains of countable elementary submodels of $\langle H(\theta), \in, \leq_w \rangle$ with the inverse inclusion as the order

Let $\kappa > \theta$ be a large enough regular cardinal and $\langle M', \in, <_w \rangle \prec \langle H(\kappa), \in, <_w \rangle$ with $\theta \in M'$ and $M = M' \cap H(\theta)$

- If $M \in q$, then $q \cap M' \in \mathbb{P}_{\in}(\theta) \cap M'$
- If $p \in \mathbb{P}_{\in}(\theta) \cap M'$, then $p \cup \{M\} \in \mathbb{P}_{\in}(\theta)$.

PFA

For every proper forcing \mathbb{P} and for every family $\{D_{\alpha} : \alpha \in \omega_1\}$ of dense sets of \mathbb{P} , there is a filter $G \subseteq \mathbb{P}$ such that $G \cap D_{\alpha} \neq \emptyset$ for all $\alpha \in \omega_1$

Applications

PFA implies $OGA, PID, BA(\omega_1)$

As Side Condition

 $\mathbb{P} = \{p : \alpha \longrightarrow \omega_1 \mid \alpha \subset \omega_1 \text{is finite}\} \text{ with inverse inclusion}$

- \mathbb{P} is not $\aleph_1.c.c.$
- It collapses \aleph_1
- we can not prove its properness

Let $M \cap \omega_1 = \delta$, $\alpha \in M \setminus dom(p)$ and $q(a) > \delta$, then the natural restriction of q to M as a function is not in M

As Side Condition

 $\mathbb{P} = \{p : \alpha \longrightarrow \omega_1 \mid \alpha \subset \omega_1 \text{is finite}\} \text{ with inverse inclusion}$

- \mathbb{P} is not $\aleph_1.c.c.$
- It collapses \aleph_1
- we can not prove its properness

Let $M \cap \omega_1 = \delta$, $\alpha \in M \setminus dom(p)$ and $q(a) > \delta$, then the natural restriction of q to M as a function is not in M

Side conditions

$$\mathbb{P}' = \{(p, \mathcal{N}): p \in \mathbb{P} \land \mathcal{N} \in \mathbb{P}_{\in}(\theta)\} \text{ such that}$$

$$\forall N \in \mathcal{N} \ \forall \alpha \in dom(p) \cap N \ (p(\alpha) \in N)$$

Gitik's question (2017)

Suppose GCH holds and κ is a regular cardinal. Is there a cardinal and GCH preserving extension of the universe in which there exists a set $A \subseteq \kappa$ of size κ such that for all countable set $X \in \mathscr{P}(\kappa) \cap V$, $A \cap X$ and $X \setminus A$ are non-empty?

Gitik's question (2017)

Suppose GCH holds and κ is a regular cardinal. Is there a cardinal and GCH preserving extension of the universe in which there exists a set $A \subseteq \kappa$ of size κ such that for all countable set $X \in \mathscr{P}(\kappa) \cap V$, $A \cap X$ and $X \setminus A$ are non-empty?

$\kappa = \aleph_0$

$$\mathbb{P}_{\omega} = \{ p : \omega \longrightarrow 2 \mid |p| < \aleph_0 \}$$

$\kappa = \aleph_1$

$$\mathbb{P}_{\omega_1} = \{ p : \omega_1 \longrightarrow 2 \mid |p| < \aleph_0 \}$$

 $\mathbb{P}_{\omega_2} \simeq Add(\aleph_0, \aleph_2)$ Hence $2^{\aleph_0} > \aleph_1$ and GCH fails

MATRIX ∈-COLLAPSE FORCING

Todorcevic 2017

$$\mathcal{S} = \{ M \in [H(\theta)]^{\aleph_0} : \langle M, \in, <_w \rangle \prec \langle H(\theta), \in, <_w \rangle \}$$

 $\mathbb{P}_{\in}^{\mathcal{M}} = \{ p \subset \mathcal{S} \mid |p| < \aleph_0 \} \text{ such that }$

- If $M, N \in p$ and $M \cap \omega_1 = \delta_M = \delta_N = N \cap \omega_1$, then $\langle M, \in, <_w \rangle \simeq \langle N, \in, <_w \rangle$
- If $M \in p$ and $\delta \in dom(p)$ such that $\delta_M < \delta$, then $\exists N \in p(\delta) \ (M \in N)$. where $p(\alpha) = \{M \in p : \delta_M = \alpha\}$ and $dom(p) = \{\alpha : p(\alpha) \neq \emptyset\}$.

MATRIX ∈-COLLAPSE FORCING

Todorcevic 2017

$$\mathcal{S} = \{ M \in [H(\theta)]^{\aleph_0} : \langle M, \in, <_w \rangle \prec \langle H(\theta), \in, <_w \rangle \}$$

 $\mathbb{P}_{\in}^{\mathcal{M}} = \{ p \subset \mathcal{S} \mid |p| < \aleph_0 \} \text{ such that }$

- If $M, N \in p$ and $M \cap \omega_1 = \delta_M = \delta_N = N \cap \omega_1$, then $\langle M, \in, <_w \rangle \simeq \langle N, \in, <_w \rangle$
- If $M \in p$ and $\delta \in dom(p)$ such that $\delta_M < \delta$, then $\exists N \in p(\delta) \ (M \in N)$. where $p(\alpha) = \{M \in p : \delta_M = \alpha\}$ and $dom(p) = \{\alpha : p(\alpha) \neq \emptyset\}$.

Aplication

- $\mathbb{P}^{\mathcal{M}}_{\in}$ is strongly proper and forces the Continuum Hypothesis
- In V[G] there is a Kurepa tree with exactly ω_2 branches that does not contain Aronszajn subtrees
- (We solved) the Gitik's question for $\kappa = \aleph_2$

SEQUENCES OF MODELS OF TWO TYPES

Neeman 2017

$$\kappa < \lambda < \theta$$

- \mathcal{T} is a collection of transitive $\langle W, \in, <_w \rangle \prec \langle H(\theta), \in, <_w \rangle$, and \mathcal{S} is a collection of $\langle M, \in, <_w \rangle \prec \langle H(\theta), \in, <_w \rangle$ with $\kappa \subset M$ and $|M| < \lambda$. All elements of $\mathcal{S} \cup \mathcal{T}$ belong to $H(\theta)$ and contain $\{\kappa, \lambda\}$
- If $M_1, M_2 \in \mathcal{S}$ and $M_1 \in M_2$ then $M_1 \subset M_2$
- If $M \in \mathcal{S}$ and $W \in M \cap \mathcal{T}$ then $(M \cap W) \in W \cap \mathcal{S}$
- Each $W \in \mathcal{T}$ is closed under sequences of lenght $\leq \kappa$ in $H(\theta)$

$$\mathbb{P}_{\kappa,\lambda}^{\mathcal{S},\mathcal{T}}=\{\langle M_{\xi}:\xi<\gamma
angle\in \mathit{H}(\theta)\mid\gamma<\kappa\}$$
 such that

- $\forall \xi, M_{\xi} \in \mathcal{S} \cup \mathcal{T}$
- $\forall \zeta < \gamma, \{\xi < \zeta : M_{\xi} \in M_{\zeta}\}$ is cofinal in ζ
- $\forall \zeta < \gamma, \ \langle M_{\xi} : \xi < \zeta \land M_{\xi} \in M_{\zeta} \rangle \in M_{\zeta}$
- The sequence is closed under intersections

$$\begin{split} \mathcal{S} &= \{ \mathit{M} \in [\mathit{H}(\theta)]^{\aleph_0} : \langle \mathit{M}, \in, <_w \rangle \prec \langle \mathit{H}(\theta), \in, <_w \rangle \} \\ \mathcal{T} &= \{ \mathit{H}(\lambda) : \langle \mathit{H}(\lambda), \in, <_w \rangle \prec \langle \mathit{H}(\theta), \in, <_w \rangle \land \mathit{cf}(\lambda) > \omega \} \end{split}$$

1

 $\mathbb{P}_{\in}^{\mathcal{S},\mathcal{T}}$ preserves \aleph_1 If λ be a cardinal such that $\omega_1 < \lambda < \theta$, collapsed to ω_1 If \mathcal{T} is stationary set on $[H(\theta)]^{<\theta}$ then $\mathbb{P}_{\in}^{\mathcal{S},\mathcal{T}} \Vdash \theta = \omega_2$

$$\begin{split} \mathcal{S} &= \{ \mathit{M} \in [\mathit{H}(\theta)]^{\aleph_0} : \langle \mathit{M}, \in, <_w \rangle \prec \langle \mathit{H}(\theta), \in, <_w \rangle \} \\ \mathcal{T} &= \{ \mathit{H}(\lambda) : \langle \mathit{H}(\lambda), \in, <_w \rangle \prec \langle \mathit{H}(\theta), \in, <_w \rangle \land \mathit{cf}(\lambda) > \omega \} \end{split}$$

1

 $\mathbb{P}_{\in}^{\mathcal{S},\mathcal{T}}$ preserves \aleph_1 If λ be a cardinal such that $\omega_1 < \lambda < \theta$, collapsed to ω_1 If \mathcal{T} is stationary set on $[H(\theta)]^{<\theta}$ then $\mathbb{P}_{\in}^{\mathcal{S},\mathcal{T}} \Vdash \theta = \omega_2$

2

Let θ a Supercompact cardinal and $J: \theta \longrightarrow H(\theta)$ Laver function $\mathbb{P}_{\in}^{\mathcal{S},\mathcal{T}}(J)$ is an iterated forcing, constructed using $\mathbb{P}_{\in}^{\mathcal{S},\mathcal{T}}$ preserves \aleph_1 forces that $\theta = \aleph_2$ Get new proof for the consistency of PFA V[G] is a model of PFA in which PFA^+ fails

THE QUESTIONS

The Problem

The forcing of Neeman preserves cardinals but does not preserve GCH

The Problem

The forcing of Neeman preserves cardinals but does not preserve GCH

The Idea

Replacing the linear parts of small nodes with matrices of the same type of models

The Problem

The forcing of Neeman preserves cardinals but does not preserve GCH

The Idea

Replacing the linear parts of small nodes with matrices of the same type of models

Let

$$S = \{ M \in [H(\omega_2)]^{\aleph_0} : \langle M, \in, <_w \rangle \prec \langle H(\omega_2), \in, <_w \rangle \}$$

$$\mathcal{T} = \{ X \in [H(\omega_2)]^{\aleph_1} : \langle X, \in, <_w \rangle \prec \langle H(\omega_2), \in, <_w \rangle \wedge^{\omega} X \subset X \}$$

- Is there a cardinal and GCH preserving forcing notion $\mathbb{P}_{\in \mathcal{M}}^{\mathcal{S},\mathcal{T}}$?
- Can we iterete such a forcing preserving *GCH*?

REFRENCES (Papers by date)

- Todorčević S., Kuzeljevic and Borisa, Forcing with matrices of countable elementary submodels, Proceedings of the American Mathematical Society 145(5), 2211-2222, 2017
- Krueger J., Forcing with adequate sets of models as side conditions, Mathematical Logic Quarterly 63(1), 124-149, 2017
- Neeman I., Forcing with sequences of models of two types, Notre Dame Journal of Formal Logic 55(2), 265-298, 2014
- Krueger J., Strongly adequate sets and adding a club with finite conditions, Archive for Mathematical Logic 53(1), 119-136, 2014
- Mitchell W. J., Adding Closed Unbounded Subsets of ω_2 with Finite Forcing, Notre Dame Journal of Formal Logic 46(3), 357-371, 2005

REFRENCES (Papers by date)

- Koszmider P., Models as side conditions, Set theory, Springer, Dordrecht, 99-107, 1998
- Todorčević S., Partition relations for partially ordered sets, Acta Mathematica 155, 1-25, 1985
- Todorčević S., Directed sets and cofinal types, Transactions of the American Mathematical Society 290(2), 711-723, 1985
- Todorčević S., A note on the proper forcing axiom, Contemporary Mathematics 95, 209-218, 1984
- Baumgartner J., Iterated forcing, Surveys in set theory, 1-59, 1983
- Todorčević S., Guzmán and Osvaldo, The P-Ideal Dichotomy, Martin's Axiom and Entangled Sets

REFRENCES (Books by date)

- Shelah S., Proper and improper forcing, 2nd ed., Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998.
- Kunen K., Set theory an introduction to independence proofs, Elsevier, 2014
- Foreman M. and Kanamori A., Handbook of Set Theory, Germany, Springer Netherlands, 2010
- Jech T., Set theory: The Third Millennium Edition, Springer, 2003
- Chang C. C., and Keisler H. J., Model theory, Elsevier, 1990
- Todorčević S., Partition problems in topology, Vol. 84, American Mathematical Soc., 1989

Thank You