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CH

consistency and independence

It all started on that day in December 1873 when Georg Cantor
established that the continuum ts not countable

| X] < [P(X)] Ro, Ny, Ng, ...
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| X] < [P(X)] No, Ry, Ro, ...
Cc = 2N0 = N’g
2Na = Na—i—l
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CH

consistency and independence

It all started on that day in December 1873 when Georg Cantor
established that the continuum ts not countable

| X] < [P(X)] No, Ry, Ro, ...
Cc = 2N0 = N’g
2Na = Na—i—l

Godel 1939: Con(ZF) implies Con(ZFC+ GCH)

Cohen 1963: Con(ZF) implies Con(ZF + —AC)
Con(ZFC) implies Con(ZFC+ —CH)

VIG) = ZFC+ 2% >Ry
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FORCING 2/14

Objects

Forcing Notion

P = (P,<p) € Vaposet of conditions with largest element

Add(NO,NQ) = {p(w X WQ) — 2 | \p| < No}
p1 < po oOr p; extends po oOr p; is stronger than ps
or p; has more information than p, iff py C py

Dense Open subsets

D C P is dense open if
e VpeP3de D(d < p)
e di e DN <d=dyeD

Generic Set

G is Generic if
o G CPis a filter

@ G meets every dense open subset of P that lies in V'

=) (il = =
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FORCING

Generic Extension

V¥ the class of P-names

7€ V¥ < 71 is arelation and ¥(o,p) € 7(c € V¥ Ap € P)

o WV
e G¢V

V]G] the generic extension

7[G] ={o[G]: (o,p) €T Ipe G}
VIG] = {r[G]: 7€ VF}
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FORCING

Generic Extension

V¥ the class of P-names

7€ V¥ < 71 is arelation and ¥(o,p) € 7(c € V¥ Ap € P)

o WV
e G¢V

V]G] the generic extension

7[G] ={o[G]: (o,p) €T Ipe G}
VIG] = {r[G]: 7€ VF}

e V[G] is the minimal model that includes VU {G} and
VN Ord= V]G] N Ord

° Vo(VIG] Ey < dpe G(pl-¢))
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SOME DIFFICULTIES

preserving cardinals and GCH

Cohen showed that (2%0) V1€l > RY
Does R} = NQVM?
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SOME DIFFICULTIES

preserving cardinals and GCH

Cohen showed that (2%0) V1€l > RY
Does R} = NQVM?

Chain condition

P is k.c.c. if every maximal antichain A C IP has size < &
Cohen: If P is k.c.c. then forcing with P preserves
cardinals > k.
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SOME DIFFICULTIES

preserving cardinals and GCH

Cohen showed that (2%0) V1€l > RY
Does R} = NQVM?

Chain condition

P is k.c.c. if every maximal antichain A C IP has size < &
Cohen: If P is k.c.c. then forcing with P preserves
cardinals > k.

P is k-closed if for every A\ < k, every descending sequence
(Pa : @ < A) of conditions of P has a lower bound.

Solovay: If P is k-closed then forcing with P preserves
cardinals < g

.
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8;-PRESERVING FORCINGS 5/14

Axiom A Forcings

A class of N; preserving forcing notions that contains Nj.c.c.
and N;-closed forcing notions introduced by Baumgartner

Recall: Let X be a set and xk < |X] a cardinal

X" ={Y< X||Y] =r}

Proper Forcings

A forcing notion P is proper if for every infinite X and every
stationary set S C [X]<®0, S remains stationary in V]G]

o Shelah: If P is proper then forcing with P preserves
Nq

o Axiom A forcings are proper
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SOME REMINDERS

Elementary Submodels

Let 6 be a regular uncountable cardinal
e HO)={z: |TC(z)| < 0}
={z: xC yJy(y is transitive A |y| < 0)}
o (H),€) = ZFC—P
e If 6 is inaccessible cardinal then (H(), €) = ZFC

Elementary substructures

2A < B iff A C B and for all formulas @[z, ..., z,] of £ and all
ay,...,a, € A, we have

AE plag,...,an <= B Epla,...,a)

Let B be a model of power a, let |.Z| < 8 < «, let X C B and
| X| < 8 Then B has an elementary submodel of power 3 which
contains X
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PROPERNESS

A Characterisation

Let 6 be a large enough regular cardinal, P a forcing notion and
(N, e,<y) < (H(0),€,<,) countable with P € N

Generic Conditions

q € P is an (N, P)-generic condition if for every dense open set
D CP, De Nimplies DN N is predense below gq. i.e.

{<q—3deDNN3IpeP(p<{,d

P is proper iff for all such N, every p € PN N has an
(N, P)-generic extension

V.

q € P is (N, P)-strongly generic condition if every dense open set
D C PN Nis predense below ¢
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THE e-COLLAPSE FORCING

Todorcevic 1984

Pc(0) is the set of all finite €-chains of countable elementary
submodels of (H(#), €, <,) with the inverse inclusion as the
order
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THE e-COLLAPSE FORCING

Todorcevic 1984

Pc(0) is the set of all finite €-chains of countable elementary
submodels of (H(#), €, <,) with the inverse inclusion as the
order

Let k > 6 be a large enough regular cardinal and

(M, e,<y) < (H(K), €,<y) with § € M and M= M N H(0)
o If M€ g, then ¢qN M € Pc(6) N M
o If p e Pc(f) N M, then pU {M} € Pc(6).
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THE e-COLLAPSE FORCING

Todorcevic 1984

Pc(0) is the set of all finite €-chains of countable elementary
submodels of (H(#), €, <,) with the inverse inclusion as the
order

Let k > 6 be a large enough regular cardinal and

(M, e,<y) < (H(K), €,<y) with § € M and M= M N H(0)
o If M€ g, then ¢qN M € Pc(6) N M
o If p e Pc(f) N M, then pU {M} € Pc(6).

For every proper forcing P and for every family {D, : a € wi}
of dense sets of P, there is a filter G C P such that GN D, # ()
for all o € wy
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THE e-COLLAPSE FORCING

Todorcevic 1984

Pc(0) is the set of all finite €-chains of countable elementary
submodels of (H(#), €, <,) with the inverse inclusion as the
order

Let k > 6 be a large enough regular cardinal and

(M, e,<y) < (H(K), €,<y) with § € M and M= M N H(0)
o If M€ g, then ¢qN M € Pc(6) N M
o If p e Pc(f) N M, then pU {M} € Pc(6).

For every proper forcing P and for every family {D, : a € wi}
of dense sets of P, there is a filter G C P such that GN D, # ()
for all o € wy

Applications

PFA implies OGA, PID, BA(w)
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THE e-COLLAPSE FORCING

As Side Condition

P={p:a— w; | & Cwiis finite} with inverse inclusion
e Pisnot ¥y.c.c
o It collapses Ny

@ we can not prove its properness

Let MNwi =6, a € M\dom(p) and ¢(a) > 0, then the natural
restriction of ¢ to M as a function is not in M J
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THE e-COLLAPSE FORCING

As Side Condition

P={p:a— w; | & Cwiis finite} with inverse inclusion
e Pisnot ¥y.c.c
o It collapses Ny

@ we can not prove its properness

Let MNwi =6, a € M\dom(p) and ¢(a) > 0, then the natural
restriction of ¢ to M as a function is not in M

Side conditions

P'={(p,N): pePAN € Pc(0)} such that

VN e N Va € dom(p) N N (p(a) € N)
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MORE DIFICULTIES 10/14

Gitik’s question (2017)

Suppose GCH holds and & is a regular cardinal. Is there a
cardinal and GCH preserving extension of the universe in which
there exists a set A C k of size s such that for all countable set
Xe Zk)NV, AN X and X\A are non-empty?
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MORE DIFICULTIES 10/14

Gitik’s question (2017)

Suppose GCH holds and & is a regular cardinal. Is there a
cardinal and GCH preserving extension of the universe in which
there exists a set A C k of size s such that for all countable set

Xe Zk)NV, AN X and X\A4 are non-empty?

Py ={p:w—2][p| <Ng }
Py, ={p:wi —2|p| <No }

P, ~ Add(No,Ns) Hence 2% > R; and GCH fails
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MATRIX e-COLLAPSE FORCING

Todorcevic 2017
S={Me [HO : (M, €, <) < (H(6), €, <u)}
PM = {pC S| |p| <Ro} such that
e If MMNe pand MNwy =dy =6y = NNwi, then
(M, €, <w) = (N, €, <w)

o If M€ pand éd € dom(p) such that dp < J, then
dN € p(d) (M € N).
where p(a) = {M € p:dy = a} and
dom(p) = {a: p(a) # 0}
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MATRIX e-COLLAPSE FORCING

Todorcevic 2017
S={Me [HO : (M, €, <) < (H(6), €, <u)}
PM = {pC S| |p| <Ro} such that
e If MMNe pand MNwy =dy =6y = NNwi, then
(M, €, <w) = (N, €, <w)

o If M€ pand éd € dom(p) such that dp < J, then
dN € p(d) (M € N).
where p(a) = {M € p:dy = a} and
dom(p) = {a: p(a) # 0}

° Pé‘/‘ is strongly proper and forces the Continuum
Hypothesis

e In V]G] there is a Kurepa tree with exactly wo branches
that does not contain Aronszajn subtrees

o (We solved) the Gitik’s question for k = N
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SEQUENCES OF MODELS OF TWO TYPES 12/14

Neeman 2017

K<A<O
e T is a collection of transitive (W, €, <,) < (H(0), €, <u),
and S is a collection of (M, €, <,,) < (H(6), €, <) with
k C Mand |M| < A. All elements of SU T belong to H(0)
and contain {k, A}
o If My, My € S and My € My then My C Mo
e If Me Sand We MNT then (MNW)e WNS

e Each W e T is closed under sequences of lenght < k in
H(0)

IF’f”Iz{(M5:£<'y) € H(0) |y < k} such that
oV, M eSUT
o V¢ <, {{ <(: Mg e M} is cofinal in ¢
@ V(¢ <y, (Mg:&<(AMee M) e M

@ The sequence is closed under intersections

™ (il = =
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TWO APPLICATIONS

PS’T

¢ preserves Np
If X be a cardinal such that w; < A < 8, collapsed to wq
If T is stationary set on [H(#)]<Y then IP"g’T IF6 = ws
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TWO APPLICATIONS

S={Mc[HO : (M e,<,) < (HB),€,<u)}
T ={H\): (HN\),€,<y) < (HO),€,<w) A cf(A) > w}

PS’T

¢ preserves Np

If X be a cardinal such that w; < A < 8, collapsed to wq
If T is stationary set on [H(#)]<Y then IP"g’T IF6 = ws

Let 6 a Supercompact cardinal and J: § — H(#) Laver
function

Pg’T(J) is an iterated forcing, constructed using
preserves N

forces that 8 = Ny

Get new proof for the consistency of PFA

V[G] is a model of PFA in which PFA™ fails

P37
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THE QUESTIONS

The Problem

The forcing of Neeman preserves cardinals but does not
preserve GCH
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THE QUESTIONS

The Problem

The forcing of Neeman preserves cardinals but does not
preserve GCH

Replacing the linear parts of small nodes with matrices of the

same type of models

€
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THE QUESTIONS

The Problem

The forcing of Neeman preserves cardinals but does not
preserve GCH

Replacing the linear parts of small nodes with matrices of the
same type of models

€

Let
5= {Me [Huw) : (M,€,<u) < {Hwa), € <u)}

T ={X € [Hw)™ : (X, €, <y) < (H(wa), €, <uw) N“X C X}
o Is there a cardinal and GCH preserving forcing notion
Po7
eM

o Can we iterete such a forcing preserving GCH?
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